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Fig. 1. Learning to infer velocity from only a density input while taking into account obstacles and other physical quantities, we present a novel method for
generating fluid flows. It allows for flexible modifications via semantic controls as well as traditional physical parameters. The conditional generation of
velocity takes less than 1 second for a 3D volume with a resolution of 2563. Using our adversarial training with cyclic mapping, we achieve results that change
sensitively with user modifications.

While modern fluid simulation methods achieve high-quality simulation
results, it is still a big challenge to interpret and control motion from visual
quantities, such as the advected marker density. These visual quantities
play an important role in user interactions: Being familiar and meaningful
to humans, these quantities have a strong correlation with the underlying
motion. We propose a novel data-driven conditional adversarial model that
solves the challenging and theoretically ill-posed problem of deriving plau-
sible velocity fields from a single frame of a density field. Besides density
modifications, our generative model is the first to enable the control of
the results using all of the following control modalities: obstacles, physical
parameters, kinetic energy, and vorticity. Our method is based on a new
conditional generative adversarial neural network that explicitly embeds
physical quantities into the learned latent space, and a new cyclic adversarial
network design for control disentanglement. We show the high quality and
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versatile controllability of our results for density-based inference, realistic
obstacle interaction, and sensitive responses to modifications of physical
parameters, kinetic energy, and vorticity. Code, models, and results can be
found at https://github.com/RachelCmy/den2vel.
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1 INTRODUCTION
The design of art-directable fluid simulations [Shi and Yu 2005; Kim
et al. 2008; Nielsen and Bridson 2011] remains a highly challeng-
ing task. Despite growing hardware performance and substantial
algorithmic improvements, achieving a desired outcomes with a
physical simulator often requires a tedious, iterative trial-and-error
process. Therefore, there is a strong need for user-friendly tools
that allow for intuitive manipulations in fluid simulation workflows.
Visual effects typically aim to achieve results defined by visible
entities that have obvious semantic meanings for humans, such as
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Fig. 2. Learning the relationship between density and velocity, our method
generates natural plume simulations from density inputs, allowing for what-
you-see-is-what-you-get modifications of the density field.

the shape of a smoke cloud or the “swirliness” of its motion. Thus, it
is advantageous for artists to have a workflow with intuitive knobs
and controls to work with these semantic entities, instead of having
to tune potentially abstruse physical parameters.
Existing methods rely on established physical models, e.g., the

Navier-Stokes equations to drive visible quantities, such as a smoke
density, with the motion induced by surrounding fluid. In these
works, the density is primarily considered as passively transported
quantity. Granted little influence over the underlying physics, it is
nigh impossible for users to realize their mental image by direct
modifications of the density fields. However, there is a strong cor-
relation between the underlying motion and spatial configurations
of the advected marker density in a fluid simulation. This poses an
interesting challenge: can we obtain a realistic motion only from a
given density configuration? While the problem is highly ill-posed
in the context of traditional physical models, it is an excellent setting
for data-driven methods.

We propose a novel deep-learning-based algorithm to encode the
physical relationship between a visual quantity, such as the smoke
density, and realistic motions as specified by a training dataset. We
show that we can train a conditional generative model to infer ve-
locity fields based on single-frame density inputs. In this way, a user
can generate and modify fluid simulations directly through arbitrary
density modifications. A use case is demonstrated in Fig. 2, where
simple density modifications, e.g., moving, rotation, and duplica-
tion of the densities in a scene directly yield complex and realistic
changes in terms of the velocity.
Given such a density-based velocity inference, a fluid simula-

tion step can be performed by applying it in conjunction with an
advection step. We make use of this approach to present a sim-
ulation method by alternatively applying the velocity-prediction
and density-advection operations in a loop. In contrast to classical
simulation methods, which focus mostly on velocity, the proposed
simulation method is density-conditioned and likewise yields nat-
ural fluid motion over time. In addition, our model is inherently
differentiable and thus lends itself to inverse problems, e.g., fluid
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Fig. 3. In our GAN training, we employ a generator G to translates densities
(in green) into velocities (in orange). In contrast to classical discriminators
that are classifier-based, we propose a discriminator that checks velocities
by inferring densities. Important physical quantities are further encoded
in the latent spaces (in blue) of the generator and discriminator. In this
way, cyclic links are formed between them and we are able to supervise the
generator to fulfill quantitative conditions explicitly. Through this cyclic
adversarial training, sensitive quantitative control is achieved.

control via user-defined keyframes [McNamara et al. 2004] or image-
based style transfer tasks [Kim et al. 2019a].
Our approach is based on Generative Adversarial Networks

(GANs) [Goodfellow et al. 2014], which were shown to be powerful
tools to learn high-dimensional data distributions, e.g., for natural
images [Isola et al. 2017; Karras et al. 2020]. However, despite their
success, these algorithms have fundamental shortcomings in the
presence of multi-model data and often mode-collapse to a simple
subset of the desired outputs [Srivastava et al. 2017; Salimans et al.
2016]. To enable plausible control and mitigate mode collapse, we
propose to deeply embed physical quantities in the learned latent-
spaces of a GAN, in addition to a cyclic adversarial network design.
As we will demonstrate below, this prevents the coupled non-linear
minimization that needs to be solved during training from converg-
ing to undesirable states that largely ignore inputs, as, e.g., exhibited
by existing conditional GAN algorithms [Mirza and Osindero 2014;
Isola et al. 2017; Marzouk et al. 2019]. Our approach, as visualized
in Fig. 3, makes it possible to train networks that learn to synthe-
size large spaces of flow behavior while at the same time being
responsive to changes of a conditioning on semantically meaning-
ful parameters, including buoyancy, kinetic energy, vorticity, and
boundary conditions. An example of the flexible modifications sup-
ported by our networks is shown in Fig. 4.

To summarize, our work makes the following contributions:

• a novel fluid generation method for velocity inference from
single-frame density snapshots,

• a unified method simultaneously enabling multiple controls
including obstacles, physical parameters, kinetic energy and
vorticity fields,

• adversarial learning via cyclic mappings for sensitive interac-
tions alongside conditional modifications,

• and a flexible differentiable simulation model with support
for a wide range of forward and inverse problems.

With these contributions, we arrive at a fluid generation method
with intuitive semantic controls and natural simulation results, as
we will demonstrate with a wide range of examples below.
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Fig. 4. Conditioned on density (d) and optional physical quantities including
parameters, kinetic energy and vorticity, our model offers flexible manipula-
tions. The first row shows the velocity(u) generated from the single density
input. With an open boundary, the velocity changes accordingly (bottom
left). The bottom right shows the result when vorticity is modified with a
heart-shape texture.

2 RELATED WORK
Fluid Simulation Methods . in computer graphics have a long

history. Methods that solve the Navier-Stokes equations on Eulerian
grids [Stam 1999], particle systems [Monaghan 1992], or hybrid
systems [Zhu and Bridson 2005; Stomakhin et al. 2013] are popular
choices. We refer readers to Bridson[2015], Koschier et al.[2019],
and Jiang et al.[2016] for overviews of these methods respectively.
While these simulation algorithms yield impressive and realistic
results for a wide range of phenomena, they typically need to be
extended to address the demands of artistic manipulation.

Aiming to support flexible fluid manipulations for users, a variety
of algorithms have been proposed in the direction of fluid control
and guiding. E.g., many fluid control methods focus on matching
desired density distributions at keyframes [McNamara et al. 2004;
Pan et al. 2013; Pan and Manocha 2017]. Based on optimization,
these methods are usually computationally expensive. Furthermore,
designing a set of keyframes allowing realistic transitions requires
extensive field expertise. There are also fluid guiding methods that
generate high-resolution velocity fields following sparse skeletal
flows [Thürey et al. 2009; Inglis et al. 2017; Forootaninia and Narain
2020]. These methods constrain velocity outputs with desired coarse
velocity samples. Providing a different perspective, our work focuses
on the relationship between velocity and a variety of physical quan-
tities including density, obstacles, kinetic energy, vorticity. More
specifically, our aim is not to match prescribed shapes or embody
geometric forms, but to understand semantic meaning of visible
quantities in order to influence velocity in a physically-plausible
manner.

Detail synthesis and stylization are active directions in fluid edit-
ing. Based on a low-resolution simulation, many techniques syn-
thesize details from textures [Ma et al. 2009; Jamriška et al. 2015],
numerical procedures [Kim et al. 2008], and high-resolution simula-
tions [Chu and Thuerey 2017; Sato et al. 2018]. Browning et al.[2014]

animate stylized keyframes on a given fluid simulation. Kim et al.
[2019a] transfer stylized features from natural images to smoke
simulations with the help of neural style transfer techniques. As
a simulation method, our work supports editing via density and
vorticity. We generate realistic velocity results for artificial density
inputs, e.g., 2D drawings and 3D meshes, as well as texture-based
vorticity modifications.

Machine learning algorithms are also proposed for fluid anima-
tion purpose. Some of them [Tompson et al. 2017; Sanchez-Gonzalez
et al. 2020] approximate the complex physical solutions with neural
networks to reduce computational cost. Reinforcement learning [Ma
et al. 2018] and differentiable fluid solvers [Holl et al. 2020; Hu et al.
2019] are being explored for fluid control.Generative models were
proposed for velocity synthesis from a set of reduced physical pa-
rameters [Kim et al. 2019b], temporal prediction [Wiewel et al. 2019],
liquid surface reconstruction from refracted images [Thapa et al.
2020], and splash modeling by user sketches [Yan et al. 2020]. Deep
generative models show strong potential in revealing relationships
between datasets. Related to our work, generative adversarial mod-
els have been explored for super-resolution [Xie et al. 2018]. In
contrast, our models do not receive any velocities as input. They
represent a unified system that considers influences from multiple
physical quantities, providing sensitive and flexible controls for
velocity generation.

Deep Learning Algorithms . have opened up new possibilities for
intuitive user manipulations in image and video applications. E.g.,
learning from image pairs allows users to generate natural images
from sketches or semantic images [Isola et al. 2017]. Trained on
portrait images with a variety of synthesized lighting conditions,
interactive relighting results can be achieved using a single input
portrait [Sun et al. 2019]. Beyond images, 3D shapes including hu-
man body geometry can be reconstructed from single 2D views [Ar-
salan Soltani et al. 2017; Alldieck et al. 2019]. While regular losses
such as 𝐿1 and 𝐿2 differences offer good performance for training on
datasets with surjective mapping [Sun et al. 2019], GANs improve
the perceptual quality significantly for a wide range of multimodal
problems, e.g., image in-painting [Kaplanyan et al. 2019], fluid super
resolution [Xie et al. 2018] and city modeling [Kelly et al. 2018]
tasks. In the following, we first discuss related work on general un-
conditional GAN, and then discuss conditional GAN (cGAN), which
is widely used in paired and unpaired image translation tasks.
GANs. Achieving state-of-the-art performance, mode collapse is
still one of the largest challenges for GANs. Starting from the vanilla
GAN with a cross entropy loss [Goodfellow et al. 2014], a series
of loss functions have been proposed for GAN training, including
the least-square GAN [Mao et al. 2017], the Wasserstein GAN [Gul-
rajani et al. 2017], and the relativistic GAN [Jolicoeur-Martineau
2018]. BourGAN [Xiao et al. 2018] extends the input domain with
a mixture of Gaussians in order to support multimodality of the
target domain. On the other hand, InfoGAN [Chen et al. 2016], VEE-
GAN [Srivastava et al. 2017], and BEGAN [Marzouk et al. 2019]
propose improvements on the self-supervision. Both InfoGAN and
VEEGAN use additional classifiers to reconstruct the latent code
that generates the fake samples, while InfoGAN focuses on the
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latent-code disentanglement and VEEGAN focuses on their distri-
butions. The discriminator of BEGAN is extended with an auxiliary
decoding part to restore ground-truth targets, which then offers a
pixel-wise supervision for the generation. In these methods, the risk
of mode collapse is reduced with improved supervision. Sampling
from noises, high-quality and diverse samples can be generated with
general GANs [Karras et al. 2020].
cGANs. While general GANs sample from regular distributions,
cGANs focus on conditional generation, e.g., image translation tasks.
Aiming to learn conditional distributions, generators and discrimi-
nators in cGANs usually take conditional attributes as additional
inputs. While this provides a level of user control, it usually yields
blurry results due to a compromise between different modes and
falls behind general GANs in terms of quality and diversity. With
paired data, Pix2Pix [Isola et al. 2017] and Pix2PixHD [Wang et al.
2018] achieves high quality results, while the diversity of results can-
not be easily extended. For unpaired data domains, CycleGAN [Zhu
et al. 2017] proposes to establish cycle consistency between domains
and MUNIT [Huang et al. 2018] decomposes image representations
into content space and style space.
While our work shares similarity with BEGAN, InfoGAN, and

CycleGAN, we propose to use conditional attributes as outputs of
discriminators. In this way, a cyclic link is formed between the con-
ditional attributes and the target. Targeting conditional supervision
in our work, we will show the superiority of the proposed method
over typical conditional adversarial learning methods below.

3 VELOCITY GENERATION FROM
SINGLE-FRAME DENSITY

Typically, fluid animations in computer graphics are generated by
solving the incompressible Navier-Stokes (NS) equations:

𝜕u
𝜕𝑡

+ u · ∇u = − 1
𝜌
∇𝑝 + 𝜈∇ · ∇u + f ,

∇ · u = 0 ,
(1)

where u, 𝑝 denote velocity, pressure, and an external force function
f = f(𝑑, u, s) that depends on marker density, velocity and a set of
physical parameters s. For simplicity, we have dropped the 𝜈 term
with explicit viscosity calculations in the rest of the paper but rely
on the numerical viscosity of the discretization. Focusing on velocity
fields, traditional solvers compute an update in the following way:

u𝑡 = A(u𝑡−1, u𝑡−1) + f − 1
𝜌
∇𝑝 , (2)

whereA denotes an advection step and 𝑡 denote the time step. Other
quantities including marker density are similarly advected with the
underlying flow, i.e., obey 𝜕𝑑/𝜕𝑡 + u · ∇𝑑 = 0 or d𝑡 = A(d𝑡−1, u𝑡−1).
In order to support density interactions, we now change the

perspective and consider density as the primary quantity of interest,
solving for a velocity output that fulfills the density conditions.
From before we have u𝑡 = F (ut−1), with function F derived from
Eq. 2. However, we’d instead like to have u𝑡 = G(𝑑𝑡 ), with an
unknown function G. As mentioned previously, manually deriving
the relationship between 𝑑𝑡 and u𝑡 according to NS equations is
impractical: G is strongly under-constrained, and 𝑑 by itself does
not allow us to draw concrete conclusions about the underlying

motion u. Hence we approach this problem in a data-driven manner:
based on a simulation dataset, we aim for finding the most suitable
u to explain an observed density configuration 𝑑 .
First, a large dataset is prepared by solving NS equations with a

wide range of initial settings and physical parameters. Represented
as {𝑑𝑡 , u𝑡 }𝑛 , the dataset defines a non-linear, high-dimensional, and
multimodal mapping between 𝑑 and u with 𝑛 pairs of data sam-
ples obeying the NS equations. With the help of such a dataset, we
can now approximate the complex mapping G with a neural net-
work: 𝐺 (𝑑𝑡 ;𝜃 ) ≈ u𝑡 . The network improves its variables 𝜃 during
training, until a local minimum is found for chosen loss function
L(u𝑡 ,𝐺 (𝑑𝑡 ;𝜃 )). This not only makes it possible to find an approxi-
mation of G, but the trained NNs also allow for very fast runtimes,
which is important for user-centered applications.

While density plays an important semantic role for users, dif-
ferent tasks typically require different viewpoints of a problem
and hence also different control knobs. Thanks to the flexibility of
data-driven algorithm, it is possible to include influence from other
quantities, e.g., the kinetic energy (KE) and the vorticity (𝜔), when
paired data is provided. Thus, by extending the training dataset to
{[𝑑, s,KE, 𝜔]⊤𝑡 , u𝑡 }𝑛 , we train 𝐺 : [𝑑, s,KE, 𝜔]⊤𝑡 → 𝑢𝑡 to learn
a multivariate mapping. Denoted with an underline, s,KE and, 𝜔
are optional inputs and a flag value of −1 will be used when not
given. A purely density-based velocity generation is offered when all
other quantities are -1. This design allow users to combine optional
conditions freely and use the trained model to generate a velocity
output that handles all given conditions. With this formulation, an
update step of our novel density-based simulation via u𝑡 = 𝐺 (𝑑𝑡 ;𝜃 )
is summarized the as:

𝑑𝑡 = A(𝑑𝑡−1, u𝑡−1) ,
u𝑡 = 𝐺 (𝑑𝑡 , s𝑡 ,KE𝑡 , 𝜔𝑡 ;𝜃 ) .

(3)

When approximating the mapping defined by the training dataset,
the network accuracy depends on the loss functions and architec-
tures. Especially when learning a multimodal relationship, like the
one between density and velocity, it is hard to avoid blurry results
as a flat local minimum when using regular losses including L2

norms. The adversarial learning of GANs is powerful in preventing
convergence to these undesirable minima. For a GAN, we jointly
train a pair of networks: a generator and a discriminator. While
the generator learns to produce data samples that match the target
domain, the discriminator is trained to learn the distribution of the
ground-truth dataset and to supervise generated samples accord-
ingly. Learning the data distribution of the ground truth helps to
avoid undesired mode interpolations. While unconditional GANs,
e.g., StyleGAN [Karras et al. 2020], generate realistic data from
random samples of a synthetic distribution like Gaussian noise, con-
ditional GANs learn a generation process conditioned on inputs
that allow users to control.
Facing a conditional generation task from density to velocity,

we propose to train our network based on conditional GANs. The
training process for a typical cGAN could be formulated as:

argmax
𝜃𝐺

min
𝜃𝐷

L𝑝 (u, 𝑑 ;𝜃𝐷 ) − L𝑛 (𝐺 (𝑑 ;𝜃𝐺 ), 𝑑 ;𝜃𝐷 ) , (4)

where L𝑝 is a function of 𝐷 (u, ...) measuring the classification dis-
tances on the positive side, and L𝑛 is a function of 𝐷 (𝐺 (𝑑), ...) for
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Fig. 5. A ResNet-based encoder-decoder generator, with s, 𝜔, and KE sub-networks encoding corresponding quantities in the bottleneck. Our discriminator
shares a very similar architecture with a swapped density (as output) and velocity (as input). Yellow, blue, and gray boxes stand for normal or transposed
convolutional layers, optional inputs, and pooling or un-pooling layers, respectively. Black numbers below stand for channel depth, while orange numbers on
top represent spatial resolutions for the 2D case with a density input in shape of 256 × 256 × 1. For 3D cases and cases with obstacles, please refer to the
appendix.

the negative side. Playing the min-max game, the discriminator tries
to make a clear separation between 𝐷 (u) and 𝐷 (𝐺 (𝑑)), while the
generator tries to decrease L𝑛 by generating realistic samples. In
this and following equations, all physical quantities share a consis-
tent subscript of the current time step 𝑡 , so it has been discarded. Our
method can be seen as a special form of a conditional GAN, a visual
outline for which is given in Fig. 3. On the generative side, a ResNet-
based encoder-decoder architecture is used for𝐺 : 𝑑 → u. Although
there is a strong multimodality between 𝑑 and u, a valid estimation
of physical quantities can largely reduce this ambiguity and point
towards a most likely mode for the decoding side. Thus, we propose
to encode physical quantities in the latent space, as will be explained
in Sec. 3.1. On the discriminative part, we propose to use an archi-
tecture that closely resembles the generator. The only difference is
that the velocity, either generated or ground-truth, is now the input
while density forms the output. With 𝐷 : u → 𝑑 , our approach
is different to other cGANs where discriminators take conditional
attributes, e.g., density, as input and produces scores as classification
outputs, i.e. 𝐷 : u, 𝑑 → (scores or distances). We show in Sec. 3.2
that our cyclic mapping with 𝐺 : 𝑑 → u and 𝐷 : u → 𝑑 leads to an
improved generation of small-scale structures. Details of L𝑝 and
L𝑛 are given in Sec. 3.2. Like the generator, our discriminator also
encodes physical quantities in the latent space. This further allows
supervision with modified conditions, as introduced in Sec. 3.3. The
next sections will provide details of our loss formulation.

3.1 Latent-Space Control Using Physical Quantities
Our generator network 𝐺 : [𝑑, s,KE, 𝜔]⊤ → [s,KE, 𝜔, u]⊤ takes
several optional inputs, as indicated by an underline. It is forced to
always estimate s,KE, and 𝜔 as outputs in the latent-space, which
is crucial for an accurate synthesis of the desired output u. This

latent-space encoding shares similarities with the environmental
map encoding proposed by Sun et al. [2019] for portrait relighting.
We propose the use of sub-networks for each quantity. This not only
offers additional user controls, but also simplifies the many-to-many
mapping between 𝑑 and u with the many-to-one mapping between
(𝑑, u) and s, which effectively improves the overall inference accu-
racy.
A detailed architecture of our generator can be seen in Fig. 5. It

transfers density into velocity with an encoder-decoder network,
where a curl operation is used as the output layer in order to achieve
fully incompressible velocity as output [Kim et al. 2019b]. Mean-
while, physical quantities are inferred from densities in the bottle-
neck part. Specifically, the physical parameters s, containing buoy-
ancy and boundary conditions, are learned with a s sub-net, while
a coarse kinetic energy and a detailed vorticity are encoded with
KE and 𝜔 sub-networks individually. While we have s in shape of
1 × 1 × 2, a 16 × 16 × 1 KE, and a 256 × 256 × 1 𝜔 for the regular 2D
case, the method can be easily extended to support other shapes.
More details of the architecture are given in the appendix.
The architecture of these sub-networks is quite straightforward

when they are considered individually: From the density input to
the encoded s, we have an encoding network with convolutional
layers, pooling layers, and a fully connected layer in the end. KE
is generated with fully convolutional layers. Besides the encoding
part, 𝜔 sub-net uses convolution-transpose layers to decode. Once
these important quantities are predicted, we concatenate them with
user modifications or flag values, since both self-encoded values
and user modifications are important for the velocity estimation.
In Fig. 5, these optional inputs are colored in blue. With decoding
layers, the second halves of our sub-networks connect these latent
code back into the original position of the main network.
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3.2 Adversarial Learning with Cyclic Mapping
Although the embedding of physical quantities in the latent space
of the generator via sub-networks significantly helps to reduce the
training difficulty, it is still hard to avoid problems of mode collapse
when training with regular GAN losses. According to Eq. 4, GANs
are usually trained with the following losses:{

L𝐷,adv = L𝑝 (𝐷 (u, ...)) − L𝑛 (𝐷 (𝐺 (𝑑), ...)),
L𝐺,adv = L𝑛 (𝐷 (𝐺 (𝑑), ...)),

(5)

The original cGAN modifies this setup and uses a conditional at-
tribute as an additional input of the generator and discrimina-
tor [Mirza and Osindero 2014]. Using 𝐷 : u, 𝑑 → (0, 1) for Eq. 5
with cross entropy losses as L𝑝 and L𝑛 , its goal is to learn the
conditional data distribution using discriminators. This, however, is
a very complex task and requires stable training with large amount
of data under varying conditions.
In practice, several distance functions have been proposed for

better convergence. E.g., BEGAN and cBEGAN [Berthelot et al. 2017;
Marzouk et al. 2019] extend the discriminator as an auto-encoder.
With 𝐷 : u, 𝑑 → u, the discriminator of cBEGAN tries to restore
only the ground-truth samples with

L𝑝 = ∥u − 𝐷 (u, 𝑑)∥; L𝑛 = ∥u − 𝐷 (𝐺 (𝑑), 𝑑)∥ . (6)

In our work on the other hand, the conditional attributes, such
as 𝑑 , are considered to be an output rather than an input of the
discriminator. Compared to Eq. 6 where the target data u is restored,
our discriminator 𝐷 : u → 𝑑 thus tries to infer the conditioning 𝑑
correctly for ground-truth samples via:

L𝑝 = ∥𝑑 − 𝐷 (u)∥; L𝑛 = ∥𝑑 − 𝐷 (𝐺 (𝑑))∥. (7)

In this way, our conditional supervision is established through a
cycle link between the generator and the discriminator: During
training, the discriminator focuses on retrieving the conditioning
from the target velocity u, while the generator should fool the
discriminator by keeping features that correspond to the correct
conditioning. Trained to minimize L𝑛 in Eq. 7, the generator is
punished for results corresponding to wrong conditions in 𝑑 , such
as blurry results interpolated from different modes. Although it is
still a complex task to learn the conditional data distribution, our
architecture allows the discriminator to check for the fulfillment of
the specified conditions in a more explicit manner.
Before introducing additional conditional attributes as inputs

to the discriminator, we compare the discriminators of cBEGAN
and our conditional adversarial learning using Eq. 6 and Eq. 7 re-
spectively in the first row of Fig. 6. Suffering from mode collapse
problems, Eq. 6 generates sub-optimal results while our adversarial
approach yields significantly more detailed results.
Similar to the objective for the generator, the task for the dis-

criminator can be simplified by including physical quantities. Thus,
using almost the same encoder-decoder architecture, we propose to
likewise encode s, 𝜔, and KE using bottleneck layers of the discrimi-
nator. In this way, we arrive at a generator and discriminator in the
form of𝐺 : [𝑑, s,KE, 𝜔]⊤ → [s,KE, 𝜔, u]⊤ and𝐷 : [u, s,KE, 𝜔]⊤ →
[s,KE, 𝜔, 𝑑]⊤. Hence, the discriminator can offer conditional super-
vision on physical quantities according to its self-encoded values.

𝐷 : u, 𝑑 → u, Eq. 6 𝐷 : u → 𝑑 , Eq. 7

Ours, Eq. 11 Ref

𝐷 : u, 𝑑 → u, Eq. 6, zoom-in 𝐷 : u → 𝑑 , Eq. 7, zoom-in

Ours,Eq. 11, zoom-in Ref, zoom-in

Fig. 6. Taking density as a input for the discriminator, cBEGAN produces
blurry results with ringing artifacts in the top left. Via density as the dis-
criminator’s output, results are improved on the top right. Our final model
at the bottom left further includes physical parameters as discriminator
outputs, and yields realistic results that closely resemble the reference at
the bottom right. Generator architectures are the same for all cases.

With
L𝑝 = ∥ [𝑑, s, 𝜔,KE]⊤ − 𝐷 (u)∥;
L𝑛 = ∥ [𝑑, s, 𝜔,KE]⊤ − 𝐷 (𝐺 (𝑑, s,KE, 𝜔))∥,

(8)

our discriminator is trained to infer the correct condition of [𝑑 ,s,𝜔 ,KE]⊤
for ground-truth velocities, so that the generated outputs have to
fulfill these conditions accordingly.

Following previous work [Berthelot et al. 2017], it is additionally
beneficial to maintain the balance between the generator and the
discriminator dynamically during training using a hyper-parameter
𝛾 = E[L𝑝 (u)]/E[L𝑛 (𝐺 (𝑑))]. To summarize, the learning objective
for the adversarial part of our network is:

L𝐷,adv = ∥ [𝑑, s, 𝜔,KE]⊤ − 𝐷 (u)∥
−𝑘 ∥ [𝑑, s, 𝜔,KE]⊤ − 𝐷 (𝐺 (𝑑, s,KE, 𝜔))∥ ,

L𝐺,adv = ∥ [𝑑, s, 𝜔,KE]⊤ − 𝐷 (𝐺 (𝑑, s,KE, 𝜔))∥
𝑘 = MovingAVG (𝛾)

(9)

During training, the optional inputs for u, s, 𝜔 and KE for the gener-
ator and discriminator are randomly selected to contain the flag (-1)
or the reference value provided in the training data.
In line with our full discriminator, 𝐷 : [u, s,KE, 𝜔]⊤ → [s,

KE,𝜔 ,𝑑]⊤, a full cBEGANmodel can be trainedwith𝐷 : [u, 𝑑, s,KE, 𝜔]⊤
→ u. Compared to the first row of Fig. 6 with models conditioned
by density only, a full conditioning via (𝑑, s,KE, 𝜔) offers better ac-
curacy. In the rest of our paper, the cBEGAN model and ours refers
to the versions with full conditioning attributes.
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Original u Modified u′

Fig. 7. An example of modified u′ based on the wavelet turbulence [Kim
et al. 2008] method. Its KE and𝜔 are used as the modified conditions in the
proposed training with data augmentation.

3.3 Control Disentanglement
When receiving density as the only input, the generator first pre-
dicts the physical quantities s, 𝜔 , and KE. Afterwards, it can infer
realistic velocity content based on the predicted conditions. As there
are no further user modifications and all conditions are consistent
with each other, we denote this as a “restorative” generation task.
While this case is handled properly using our cyclic adversarial
training as explained so far, things become more difficult when
user modifications are introduced. In a “modified” generation task,
the results are expected not only to be different to the restorative
version, but also to faithfully and sensitively deliver the quantita-
tive modifications as specified by the user. Interestingly, a trained
network makes significant errors for such tasks if it has never seen
these modified conditions at training time. As the physical quanti-
ties are correlated in the training data, the generative model tends
to place more attention on directly related conditions. For instance,
once trained, modifications of KE lead to clear differences in the
generated velocities, but when KE is kept unmodified, the model
largely ignores changes only in s, as these would likewise lead to a
change in KE according to simulations in the training dataset.
In order to make user controls as-disentangled-as-possible, we

propose to train the generative model with randomly perturbed
parameters as data augmentation. We obtain modified physical pa-
rameters s′ by randomly sampling a uniform distribution from a
pre-defined range for each parameter. As adding random perturba-
tions to the original KE and 𝜔 could result in unnatural results, we
choose to first synthesize a modified u′ and calculate its KE and 𝜔
as the modified conditions. More specifically, we use wavelet turbu-
lence [Kim et al. 2008] with a randomized strength. With y(X) and
𝑒f denoting curl noise evaluation and frequency-based weighting,
respectively, it can be summarized as:

u𝐿𝑅 = DownSample(u, 0.25)
u′ = UpSample(u𝐿𝑅, 4.0) + 2−

5
6 𝑒f · y(X)

KE′,𝑤 ′ = 1
2u

′2, ∇ × u′

A visual sample is given in Fig. 7
When conditions are modified, the generated results should be

supervised accordingly.While the fulfillment of KE and𝜔 conditions
can be improved via loss terms ∥𝐾𝐸 ′− 1

2𝐺u (𝑑, 𝐾𝐸 ′)2∥ and ∥𝜔 ′−∇×
𝐺u (𝑑,𝜔 ′)∥, the conditioning of s can only be guaranteed with the
help of our discriminator. Specifically, we use a loss function ∥𝑠 ′ −
𝐷s (𝐺u (𝑑, 𝑠 ′))∥. With a binary mask 𝑀 randomly deciding which
conditions to modify, the learning objective with data augmentation

can be summarized as:
u∗ = 𝐺u

(
𝑑,M ⊙ [s′, 𝜔 ′, 𝐾𝐸 ′]⊤ + (1-M) ⊙ FlagValues

)
𝑑∗, 𝑠∗ = 𝐷𝑑,s

(
u∗,M ⊙ [s′, 𝜔 ′, 𝐾𝐸 ′]⊤ + (1-M) ⊙ FlagValues

)
L𝐺,mod = ∥ [1,M] ⊙ ([𝑑, s′, 𝜔 ′, 𝐾𝐸 ′]⊤ − [𝑑∗, 𝑠∗,∇ × u∗, 12u

∗2]⊤)∥
(10)

with flag values in the same shape of corresponding conditions and
⊙ stands for an elementwise product.

3.4 Learning Objectives Summary
To summarize, our approach for conditional generative learning is
based on a generator and a discriminator using the same encoder-
decoder architecture with switched inputs and outputs. The con-
ditional supervision is established though the cyclic-link between
them. Being used in the adversarial training for restorative gen-
eration, this conditional supervision further allows us to train via
augmented data with modified conditions. We additionally include
an 𝐿1 regularization term with strength 𝜆𝑙1 for stabilization. The
final learning objectives for our generator and discriminator are:{
L𝐺 = 𝜆𝑎𝑑𝑣L𝐺,adv + 𝜆𝑚𝑜𝑑L𝐺,mod + 𝜆𝑙1∥ [u, s, 𝜔,KE]⊤ −𝐺 (𝑑)∥
L𝐷 = L𝐷,adv .

(11)

This formulation provides us with an efficient generative model
for velocity that supports a range of user controls from density,
vorticity, kinetic energy to physical parameters. Most importantly,
the network reacts sensitively to all controls.

3.5 Data-sets and Training Summary
Our regular 2D training dataset without obstacles has 200 simu-
lations with a resolution of 2562. For the initial state, we sample
several density sources with random positions and shapes. Regard-
ing physical parameters, the buoyancy force varies from 10−4 to
2× 10−4 and boundary conditions are either closed on all directions
or opened along the y-axis. In each of the simulations, the first 60
time steps are skipped as the preparation phase and the following
200 time steps are recorded as data pairs with density and velocity
information. The regular 3D dataset is likewise computed with a
resolution of 2563 with a longer preparation phase of 90 time steps.
Trained on these datasets according to Eq. 11, our full models in 2D
and 3D are able to support a wide range of applications, which will
be shown in Sec. 5.

Besides purely buoyant motions contained in the regular datasets,
turbulent motion caused by obstacles is also very important for
practical fluid simulations. Thus, we prepare datasets in 2D and 3D
with static and moving obstacles. Specifically, we first simulate 100
simulations with up to 5 static obstacles in regular shapes, namely
square and circular shapes, located at random places that could
overlay with each other. Based on this 100 simulations, we further
assign random velocity to obstacles on each frame to get another
dataset with influence from moving obstacles. Using the same train-
ing loss and network architectures, we train our obstacle models
in 2D and 3D with 𝐺 : [𝑑, 𝑜𝑚, 𝑜u, s,KE, 𝜔]⊤ → [s,KE, 𝜔, u]⊤ and
𝐷 : [u, 𝑜𝑚, 𝑜u, s,KE, 𝜔]⊤ → [s,KE, 𝜔, 𝑑]⊤ using additional inputs
𝑜𝑚, 𝑜u, which denote a mask for the obstacle regions and the velocity
of the obstacles.
Examples of training data are given in the supplemental video.

Before showing various results produced by the four models, in the
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Table 1. Evaluations on restorative tests and modification tests of kinetic
energy and vorticity. While the performance is close for the restorative tests,
our model achieves better control of KE and 𝜔 .

Models

Restoration, Restoration, u with ref-s Restoration, u with self-s

s (L1↓) (L1↓) (LSiM↓) (L1↓) (LSiM↓)

static, temporal static, temporal static, temporal static, temporal static, temporal

MAE 0.128, 0.197 0.059, 0.097 0.107, 0.142 0.071, 0.149 0.131, 0.204
Pix2Pix 0.089, 0.237 0.067, 0.122 0.117, 0.160 0.079, 0.186 0.145, 0.235
cBEGAN 0.079, 0.134 0.055, 0.093 0.101, 0.136 0.067, 0.131 0.125, 0.191
NoMod 0.078, 0.146 0.064, 0.107 0.094, 0.126 0.071, 0.156 0.111, 0.186
Ours 0.063, 0.095 0.058, 0.094 0.101, 0.134 0.065, 0.137 0.116, 0.192

KE and ω Modifications

Models

M𝑎KE, 𝑎 = M𝑎ω, 𝑎 =

0.500, 1.000, 2.000, 4.000 0.500, 1.000, 2.000, 4.000

MAE 0.612, 0.947, 1.587, 2.694 4.827 0.870, 1.030, 1.216, 1.401 1.61
Pix2Pix 0.563, 0.944, 1.566, 2.626 4.664 1.348, 1.461, 1.736, 2.046 1.518
cBEGAN 0.663, 0.963, 1.558, 2.497 3.766 0.833, 1.071, 1.407, 1.733 2.08
NoMod 0.759, 1.004, 1.597, 2.749 3.622 1.003, 1.123, 1.444, 1.782 1.777
Ours 0.588, 0.991, 1.806, 3.480 5.919 0.594, 0.804, 1.269, 2.220 3.737

𝑀𝐾𝐸×4
𝑀𝐾𝐸×0.5

↑ 𝑀𝜔×4
𝑀𝜔×0.5

↑

next section we focus on the regular training without obstacles in
2D to evaluate the quality of the proposed approach with visual
results and metrics.

4 EVALUATION SUMMARY
We summarize evaluations of our method in comparison with re-
lated work and ablated models to illustrate the effects of L𝐺,adv and
L𝐷,adv, as well as themodified conditions viaL𝐺,mod. The following
models are used for comparisons: First, a baseline model denoted as
MAE is trained to reduce the Mean Absolute Error without discrim-
inators using L𝐺 = 𝜆𝑙1∥ [u, s, 𝜔,KE]⊤ −𝐺 (𝑑)∥. This model largely
resembles previous work employing supervised approaches [Kim
et al. 2019b]. Training the generative part under the adversarial
supervision of a classifier-style discriminator, a Pix2Pix model is
obtained for our case. Furthermore, replacing the regular adversarial
training with aforementioned L𝑝 = ∥u − 𝐷 (u, [𝑑, s, 𝜔,KE]⊤)∥ and
L𝑛 = ∥u − 𝐷 (𝐺 (𝑑), [𝑑, s, 𝜔,KE]⊤)∥, we obtain a model resembling
cBEGAN [Marzouk et al. 2019]. Correspondingly, training with our
adversarial losses of Eq. 8 but without L𝐺,mod, we get the NoMod
model. The final model, Ours, is additionally trained with L𝐺,mod,
yielding the full formulation of Eq. 11. For all adversarial models, the
same dynamic balancing scheme is applied. A regular fluid solver,
MantaFlow [Stam 1999; Thuerey and Pfaff 2018], is used as ground
truth. In the following, we summarize evaluations in tables, while
detailed figures and statistics are presented in the appendix. The
supplemental videos are recommended for visual comparisons of
the resulting motions.
The evaluations can be divided into restorative tests, where den-

sity forms the only input and results should match the references,
and modification tests, where other quantities are modified with
the goal to obtain correspondingly varying outputs. In the latter,
generated velocities should vary continuously and sensitively in
accordance to the changing controls.
Static and temporal restoration accuracy is evaluated using L1

and LSiM [Kohl et al. 2020] in Table 1 (Restoration). The static error

Table 2. Evaluations on physical-parameter modifications. Compared to
simulation candidates with different conditions, methods should match the
true reference, marked with an underline in the table with a closest distance.
Our method ranks first for buoyancy and boundary controls in terms of
accumulated distances to the true reference.

s Modifications (LSiM↓)

Models

Buo × 2.0 Buo × 0.5 Avg. to F/T Buo

1.00＞1.50＞2.00＜2.50 0.25＞0.50＜1.00＜2.00 FALSE TRUE(↓)

MAE 0.140, 0.157, 0.203, 0.250 0.186, 0.130, 0.193, 0.252 0.196 0.167
Pix2Pix 0.171, 0.183, 0.218, 0.255 0.182, 0.143, 0.206, 0.260 0.210 0.181
cBEGAN 0.153, 0.153, 0.194, 0.241 0.181, 0.130, 0.191, 0.249 0.195 0.162
NoMod 0.200, 0.171, 0.176, 0.202 0.222, 0.159, 0.175, 0.222 0.199 0.168
Ours 0.222, 0.175, 0.159, 0.176 0.187, 0.135, 0.191, 0.245 0.199 0.147

Models

OpenBnd Closed Bnd Avg. to F/T Bnd Total Avg.

Closed＞Open Closed＜Open FALSE TRUE(↓) FALSE TRUE(↓)

MAE 0.246, 0.183 0.150, 0.246 0.246 0.167 0.221 0.167
Pix2Pix 0.227, 0.221 0.162, 0.229 0.228 0.192 0.219 0.186
cBEGAN 0.243, 0.185 0.145, 0.237 0.240 0.165 0.217 0.164
NoMod 0.302, 0.163 0.146, 0.228 0.265 0.155 0.232 0.161
Ours 0.280, 0.149 0.138, 0.219 0.250 0.144 0.224 0.145

measures outputs across 1200 density inputs with the ground-truth
velocity of the reference solver. It quantifies the averaged behavior
for single-frame estimations. The temporal error, on the other hand,
is measured over the course of 60 frames. For 20 different sequences,
we take first density frames as the initial inputs, estimate velocities
and advect forward. The averaged difference for 60 frames then
quantifies temporal behaviors. The static and temporal errors for
the physical parameters s are likewise calculated.
From Table 1, we can see that MAE model performs poorly for

the estimation of s. However, by relying more on density inputs,
it still manages to achieve good accuracy for velocity estimation.
The performance of all models is close for the restoration of u, with
cBEGAN being very close to Ours, both outperforming the other
variants. Our final model achieves the best performance in terms of
s estimation, which indicates that our approach yields an improved
encoding of physical parameters in the latent space.
As our goal is to move beyond a pure restoration of inputs, it is

especially interesting to evaluate how well the different methods
support user manipulations. Thus, we evaluate results with KE and
𝜔 modifications in Table 1 as well as changes to buoyancy and
boundary conditions in Table 2. Changing conditional KE and 𝜔
by constant factors, we calculate the ratio between generated fields
and the original references. Averaged on 1200 density inputs, our
final model yields the best sensitivity for decreased and enhanced
KE and 𝜔 . For evaluations on sensitivity to physical parameters, we
generate results with modified s and compare them with regard to
a series of simulations offered by a regular solver using gradually
modified conditions. Our full model ranks first by matching the
correct candidate all the time, while others have problems matching
tough conditions well, e.g., enhanced buoyancy or open boundary.
Our full model has the smallest distances to the true references in
average and our NoMod model ranks second, followed by cBEGAN,
MAE and Pix2Pix.
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𝑑90 , Ref 𝑑90 , Ours

𝑑0 , Input

u90 , Ours

𝑑160 , Ref 𝑑160 , Ours u160 , Ours

𝑑75 , Ref 𝑑75 , Ours

𝑑0 , Input

u75 , Ours

𝑑120 , Ref 𝑑120 , Ours u120 , Ours

Fig. 8. Regular plume simulations with a resolution of 2563 generated by our method
compared to a reference simulation. Starting from a single density frame as input, our
method yields realstic motions that stay close to the reference over the course of more
than 100 recurrent evaluation and advection steps.

To summarize, MAE and cBEGAN exhibit similar behavior in
general: While cBEGAN slightly improves on all aspects, both of
them achieve good velocity restoration accuracy but with entan-
gled controls. Their models are mainly affected by the density and
kinetic energy, and are less sensitive to changes of physical parame-
ters and vorticity. Compared to MAE, the Pix2Pix model performs
slightly worse for almost all aspects due to mode collapse problems,
which is illustrated in the appendix with additional examples. Our
adversarial learning with cyclic links balances all conditional inputs
significantly better. The NoMod model is more sensitive to modifica-
tions of physical-parameters, at the expense of a slightly decreased
restoration accuracy and energy control. By adding L𝐺,𝑚𝑜𝑑 , our
final model combines both aspects: it achieves a very good overall
performance together with an improved disentanglement of the
controls. We further evaluated our method and cBEGAN on a more
challenging training task with varying buoyancy directions. Results
in the appendix show a consistent conclusion that as a conditional
GAN, our method follows the conditions more sensitively and accu-
rately.

5 RESULTS
In the following, we compare our method with the reference fluid
solver [Thuerey and Pfaff 2018] for generating rising plume sim-
ulations, and show a variety of conditional results achieved with
additional user modifications. At last, we extend our model to obsta-
cle interactions and demonstrate its capabilities for generalization
with a range of test cases far from the training data. An additional
optimization case, leveraging the differentiable nature of the trained
model for an inverse problem, can be found in the appendix.

5.1 Smoke Generation from a Single Density Input
Fig. 8 shows two simulations of rising plumes. Starting from a single
density volume, our simulation results match the large scale struc-
tures of the reference even after 100 time-steps. Although small scale
details differ from the references, they rotate and diffuse naturally
with realistic motions. Trained on regular simulations, our method
generalizes to new, artificial density inputs, e.g., drawings shown in
Fig. 9. Using this density-based fluid generation method, users can
design the initial state for a simulation with density manipulations,
as illustrated in Fig. 2, and modify density in on-going simulations.

5.2 Controlling Results with Physical Quantities
Besides density-based generation, our method supports user con-
trols in terms of KE,𝜔 , as well as physical parameters. When prepar-
ing these conditional attributes, users can make use of the self-
encoded quantities as a starting point. In Fig. 10, we show modified
results of the previous plume scene. Similar to the 2D model, our 3D
model responds sensitively when buoyancy increases. Multiplied
by a random scalar field in 3D space with values from 1.5 to 4, the
enhanced vorticity condition leads to a natural result with more
vortices. Conditioned with increasing buoyancy and vorticity, we
can generate a series of results that change continuously and sensi-
tively, as shown on the top of Fig. 11. While boundary modification
for 2D plumes is displayed at the bottom, we show 2D vorticity
control using textures in Fig. 12. As shown in the visualization of
velocity and vorticity, the generated velocity closely follows the
texture-based modifications.

5.3 Learning Obstacle Influences
Besides purely buoyant motions as discussed above, turbulent mo-
tion caused by obstacles is also very important for practical fluid
simulations. Based on a dataset with random obstacles in regular
shapes, we train our networks to learn their influences on veloc-
ity outputs. Using the same training loss and network architec-
tures, we train our 𝐺 : [𝑑, 𝑜𝑚, 𝑜u, s,KE, 𝜔]⊤ → [s,KE, 𝜔, u]⊤ and
𝐷 : [u, 𝑜𝑚, 𝑜u, s,KE, 𝜔]⊤ → [s,KE, 𝜔, 𝑑]⊤ with additional inputs
𝑜𝑚, 𝑜u, which denote a mask for the obstacle regions and the veloc-
ity of the obstacles.

Our 2D results are shown in Fig. 13. The left scene has obstacles
in regular shapes, the middle one uses an irregular heart shape as a
generalization test, and the right scene has moving obstacles with
concave shapes. The velocity and vorticity visualizations show that
obstacles are properly handled in our results. For complex obstacles
with very detailed geometry, our model can deviate near small
features. However, it presents divergence-free velocity result that
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𝑑0, Inputs

𝑑0, Inputs 𝑑60, Open Bnds u60, Open Bnds 𝜔60, Open Bnds

𝑑60, Closed Bnds u60, Closed Bnds 𝜔60, Closed Bnds

Fig. 9. Our method generalizes well to artificial drawings as inputs.

𝑑60, w.o. mod 𝑑60, Buo×2 𝑑60, 𝜔 × 𝑟

𝑑135, w.o. mod 𝑑135, Buo×2 𝑑135, 𝜔 × 𝑟
Fig. 10. 3D results with buoyancy and vorticity modifications.

below training rng. seen min unseen interpolated seen max above training rng.

×1.0

×1.5

×2.0

3D Buoyancy & Vorticity Modification

Buo

𝜔 below training rng. seen min unseen interpolated seen max above training rng.

𝜔

u

𝑑

2D Buoyancy Modification

Fig. 11. Our 3D and 2D results change continuously and sensitively with varying controls. Top: we show the 3D case at a resolution of 2563 with increasing buoyancy along X,
and increasing vorticity along Y. Bottom: density, velocity and vorticity results at a resolution of 2562 when changing buoyancy along X in 2D.
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𝑑160& tex.
𝜔160

𝑑160
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Fig. 12. The results with texture-based vorticity modifications. We show density,
velocity, the overlay of density and vorticity texture, and the resulting vorticity.

𝑑90 , Ref 𝑑90 , Ours 𝑑90 , Ref 𝑑90 , Ours 𝑑90 , Ours

u90 , Ref u90 , Ours u90 , Ref u90 , Ours u90 , Ours

𝜔90 , Ref 𝜔90 , Ours 𝜔90 , Ref 𝜔90 , Ours 𝜔90 , Ours

Regular Shapes Generalization Moving

𝑑180 , Ref 𝑑180 , Ours 𝑑180 , Ref 𝑑180 , Ours 𝑑180 , Ours

u180 , Ref u180 , Ours u180 , Ref u180 , Ours u180 , Ours

𝜔180 , Ref 𝜔180 , Ours 𝜔180 , Ref 𝜔180 , Ours 𝜔180 , Ours

Fig. 13. 2D results with obstacles. Learning from obstacles in regular shapes,
our model generalizes well to unseen shapes, and handles moving obstacles
successfully.

corresponds to the overall obstacle settings nicely and efficiently,
which is very suitable for user control.

Likewise, 3D results with a spherical obstacle are shown in Fig. 14,
and an unseen torus-shaped obstacle is introduced in Fig. 15. A

𝑑45 , Ref 𝑑45 , Ours𝑑0 , Input

𝑑140 , Ref 𝑑140 , Ours

Fig. 14. Based on the initial density frame and the obstacle mask as inputs,
the generated velocity manages to respect obstacle boundaries and match
the reference well on large scales.

𝑑50 , w.o.Obs 𝑑50 , w. Obs

𝑑120 , w.o.Obs 𝑑120 , w. Obs

Fig. 15. Users can design simulations by modifying obstacles. Our method
generalizes well to obstacles with unseen shapes, e.g., the torus on the left.

combination of static and moving obstacles (fish) alongside several
density sources in the shape of bunnies is shown in Fig. 16.
Our model yields realistic motions for all cases, and requires

around 0.7 seconds/frame for simulations with a resolution of 2563
on Nvidia Tesla v100, which is 10 times faster than the reference

ACM Trans. Graph., Vol. 40, No. 4, Article 100. Publication date: August 2021.



100:12 • Chu, M.; Thuerey, N.; Seidel, HP.; Theobalt C.; Zayer R.

𝑑70 , front 𝑑70 , side
𝑑0 , Input

𝑑120 , front 𝑑120 , side

Fig. 16. 3D results with static and moving obstacles. We render the square
obstacle transparently for clarity. Simulated with a resolution of 2563, smoke
moves naturally around the fins of the fish, as well as around the transparent
square- and green sphere-shaped obstacles.

fluid solver MantaFlow. For a better visual appreciation of our
results, the reader is referred to the accompanying media.

5.4 Discussion and Limitations
We have demonstrated that a generative model can be trained to
learn and respect a wide range of complex, conditional inputs. How-
ever, one limitation of our approach is that the generated result is
not guaranteed to closely fulfill all specified goals. Especially for
strong modifications of individual parameters, we found that the
trained network generates a compromise solution. As shown in
Table 1, when enhancing the conditional inputs of KE or 𝜔 with a
factor of 4, the resulting velocity shows stronger KE or 𝜔 , but the
resulting sensitivity in terms of𝑀KE×4 and𝑀𝜔×4 are less than 4. In
the appendix, we test our model on simulations with vorticity con-
finement to shed more light on this problem and possible solutions,
such as enlarging the corresponding sub-networks.
Aiming to provide flexible user controls, our velocity inference

depends on the current physical quantities of 𝑑 , KE, 𝜔 and s, with-
out involving historical information. This can lead to ambiguous
situations. E.g., when an obstacle abruptly changes it’s motion, this
changemight not yet be reflected in the density configuration.While
we believe this is a reasonable compromise, it would be an interest-
ing topic in the future to inject additional historical information as
input for the networks.
As a deep-learning algorithm facing a multimodal problem, our

result sometimes is a little damped compared to the reference. This
is more visible in 3D cases and a larger model with more weights can
perform better at the cost of more training resources. Our result can

also be less realistic for cases with complex motions around moving
or irregular obstacles. Possible improvements can be obtained by
using our method for a coarse prediction of the divergence-free
velocity, in combination with an efficient post-refinement using a
regular solver. Although we offer short run-time, the training time
is relatively long. Showing diverse results, we anticipate models
trained with our method can support a reasonable range of applica-
tions, which would then compensate for the training time.

6 CONCLUSIONS
To the best of our knowledge, we have presented the first density-
based velocity generation method via a generative model that learns
to represent a large variety of physical behavior. We have demon-
strated the learning of meaningful controls via obstacles, physical
parameters, kinetic energy and vorticity fields. Using the proposed
adversarial learning with cyclic mapping, we achieved highly sen-
sitive and disentangled controls for multiple quantities, as demon-
strated in our detailed qualitative and quantitative evaluations. As
an efficient tool for velocity control, it would be possible to employ
our method for interactive fluid editing by using an optimized model
in conjunction with a fast visualization.

With a wide range of results, our method showcases strong gen-
eralization and flexibility. While we have focused on density as a
visible quantity, a variety of other visual inputs are imaginable to
drive simulations: e.g., streamlines or vortex cores. It will be very
interesting to extend our method to captured data, e.g., to learn the
motion of “dancing droplets” driven by the “Marangoni Effect” from
2D captures. For 3D volumetric smoke data, techniques for density
reconstruction from single or multiple views could be helpful. Be-
yond fluid simulations, we anticipate that our method will provide
a good basis for learning other physical problems that require intu-
itive controls, e.g., cloth, multiphase fluids, or various elasto-plastic
materials.
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In the following, we first present details on evaluations, Then, we
show how to employ our approach for keyframe optimization. Fi-
nally, we present concrete examples to illustrate limitations of our
method and offer details of training parameters.

A QUALITATIVE AND QUANTITATIVE EVALUATIONS
We evaluate methods in terms of restoration, modification, and
generalization of buoyancy directions. While quantitative evalua-
tions are summarized in tables of the main document, we present
more details here with qualitative comparisons, discussions, and
formulations of applied metrics.

Scene A,
Input𝑑0 with
Closed Boundary
Buoyancy:1 × 10−4

Scene B,
Input𝑑0 with
Open Boundary
Buoyancy:2 × 10−4

A

Pix2Pix,𝑑100 MAE,𝑑100 cBEGAN,𝑑100 NoMod,𝑑100 Ours,𝑑100 Ref,𝑑100

Pix2Pix, u100 MAE, u100 cBEGAN, u100 NoMod, u100 Ours, u100 Ref, u100

A

Pix2Pix,𝑑180 MAE,𝑑180 cBEGAN,𝑑180 NoMod,𝑑180 Ours,𝑑180 Ref,𝑑180

Pix2Pix, u180 MAE, u180 cBEGAN, u180 NoMod, u180 Ours, u180 Ref, u180
B

Pix2Pix,𝑑100 MAE,𝑑100 cBEGAN,𝑑100 NoMod,𝑑100 Ours,𝑑100 Ref,𝑑100

Pix2Pix, u100 MAE, u100 cBEGAN, u100 NoMod, u100 Ours, u100 Ref, u100
B

Pix2Pix,𝑑180 MAE,𝑑180 cBEGAN,𝑑180 NoMod,𝑑180 Ours,𝑑180 Ref,𝑑180

Pix2Pix, u180 MAE, u180 cBEGAN, u180 NoMod, u180 Ours, u180 Ref, u180

Fig. 17. Restorative results from Pix2Pix, MAE, cBEGAN, NoMod, and our
final model. References are shown on the rightmost. Started from the input
𝑑0 on the top, we show the simulation results of frame 100 in the middle
and frame 180 on the bottom.

𝑑150 𝑑150 , KE×1.5 𝑑150 , KE×1.5 𝑑150 , KE×1.5 𝑑150 , KE×1.5 𝑑150 , KE×1.5

u150 u150 , KE×1.5 u150 , KE×1.5 u150 , KE×1.5 u150 , KE×1.5 u150 , KE×1.5

Ref w.o.mod MAE Pix2Pix cBEGAN NoMod Ours

𝑑80 𝑑80 ,𝜔 × 3 𝑑80 ,𝜔 × 3 𝑑80 ,𝜔 × 3 𝑑80 ,𝜔 × 3 𝑑80 ,𝜔 × 3

u80 u80 ,𝜔 × 3 u80 ,𝜔 × 3 u80 ,𝜔 × 3 u80 ,𝜔 × 3 u80 ,𝜔 × 3

Fig. 18. Results with increased KE (top) and 𝜔 (bottom). Compared to the
reference on the left, all results are more energetic. While Ours is very
responsive to both KE and 𝜔 modifications, the NoMod model is not far
behind. MAE, Pix2Pix, and cBEGAN are less influenced by the KE modifica-
tion. MAE ranks the last for 𝜔 control, while Pix2Pix and cBEGAN are in
between.

Restorative Tests
The goal for the restorative test in Fig. 17 is to restore a sequence
of 200 time steps given only a single density frame as input. The
results of the aforementioned four models are compared to a refer-
ence simulation starting with a non-zero velocity. Starting at the
same density input 𝑑0, the simulations gradually deviate from the
reference due to the temporal accumulation of errors from the veloc-
ity inference step. While results after 100 steps, e.g., 𝑑100 and u100
are still relatively close for all methods, as shown in Fig. 17, Pix2Pix,
MAE, and NoMod show larger deviations for later frames. We no-
tice that the Pix2Pix model has more difficulties with the buoyancy
condition. Mixing different modes of buoyancy conditions together,
it generates slightly stronger motions for scenes with weak buoy-
ancy like scene A, while much weaker motions are generated for
scenes with strong buoyancy, as shown in scene B. Fig. 17 shows
the saturation difference of u180 between Pix2Pix and the reference.
On frame 180, cBEGAN and Ours still manage to closely match the
reference state. This example corresponds to statistics of Table 1,
where cBEGAN and Ours achieve lower errors than other models.

Modification Tests
Besides decent restoration accuracy, we demonstrate the sensitivity
of our model under modified conditions including kinetic energy,
vorticity, buoyancy, and boundary conditions in the following.

KE and 𝜔 Modification Tests. The results in Fig. 18 are generated by
applying a factor of 1.5 and 3 to the self-encoded KE and 𝜔 fields
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𝑑170 , w.o. Mod 𝑑170 , w.o. Mod 𝑑170 , w.o. Mod 𝑑170 , w.o. Mod 𝑑170 , w.o. Mod 𝑑170 , w.o. Mod

u170 , w.o. Mod u170 , w.o. Mod u170 , w.o. Mod u170 , w.o. Mod u170 , w.o. Mod u170 , w.o. Mod

Pix2Pix MAE cBEGAN NoMod Ours Ref

+ Buoyancy Modification
𝑑170, buo × 2 𝑑170, buo × 2 𝑑170, buo × 2 𝑑170, buo × 2 𝑑170, buo × 2 𝑑170, buo × 2

Overlay Overlay Overlay Overlay Overlay Overlay

+ Open Boundary
𝑑170 + OB 𝑑170 + OB 𝑑170 + OB 𝑑170 + OB 𝑑170 + OB 𝑑170 + OB

u170 + OB u170 + OB u170 + OB u170 + OB u170 + OB u170 + OB

Fig. 19. Results with modified parameters. The original scene has a closed
boundary and weak buoyancy. 2nd Row: When increasing the buoyancy,
Pix2Pix, MAE, and cBEGAN ignore themodification and repeat their original
results. NoMod is influenced slightly. Ours achieves the desired sensitivity.
3rd Row: All models respect the open boundary, however, Ours stays closest
to the reference. Others introduce unnecessary deviations.

respectively. While NoMod and our full model show strong motions
for the increased KE, cBEGAN, Pix2Pix, and MAE largely ignore
the modifications. Regarding boosting 𝜔 , our full model responds
with a large amount of eddies, NoMod is closely behind, cBEGAN
and Pix2Pix ranks the third and forth, and MAE is again the least
influenced.
Using different factors 𝑎 ∈ {0.5, 1.0, 2.0,4.0}, we measure the

sensitivity metric, 𝑀𝑎KE =
∑ 1

2 𝐺 (𝑑, 𝑎KE𝑟 )2/
∑ 1

2𝐺 (𝑑)2 in Table 1
(KE and 𝜔 Modifications) to offer a quantitative evaluation across
1200 density inputs. Here, KE𝑟 stands for the kinetic energy of the
reference scene. Likewise, the metric𝑀𝑎𝜔 =

∑ ∥∇ ×𝐺 (𝑑, 𝑎𝜔𝑟 )∥/
∑

∥∇ ×𝐺 (𝑑)∥ is calculated for vorticity evaluation, with the original
𝜔𝑟 from the reference. When increasing KE or 𝜔 , the sensitivity
evaluation shows that our method outperforms the others, followed
by our adversarial training in NoMod. This is consistent with the
qualitative comparison of Fig. 18. Our method likewise yields the
best sensitivity in both directions, measured in terms of 𝑀KE×4

𝑀KE×0.5
and

𝑀𝜔×4
𝑀𝜔×0.5

, respectively.

Modifications of s. Corresponding to Table 2 of the main paper, we
present visual results with modified physical parameters in Fig. 19
and Fig. 20. In Fig. 19, the reference scene in the first row is originally
generated with a closed boundary and a buoyancy of 1 × 10−4.
With close restorative accuracy, all results in the first row match
the reference well. Changing the buoyancy condition to 2 × 10−4,

𝑑170 , w.o. Mod 𝑑170 , w.o. Mod 𝑑170 , w.o. Mod 𝑑170 , w.o. Mod 𝑑170 , w.o. Mod 𝑑170 , w.o. Mod

u170 , w.o. Mod u170 , w.o. Mod u170 , w.o. Mod u170 , w.o. Mod u170 , w.o. Mod u170 , w.o. Mod

Pix2Pix MAE cBEGAN NoMod Ours Ref

+ Buoyancy Modification, Overlay

Buo×.5
Buo×1

+ Closed Boundary

𝑑170 + CB 𝑑170 + CB 𝑑170 + CB 𝑑170 + CB 𝑑170 + CB 𝑑170 + CB

u170 + CB u170 + CB u170 + CB u170 + CB u170 + CB u170 + CB

Fig. 20. Results with modified parameters. The original scene has an open
boundary and a strong buoyancy. 2nd Row: When decreasing the buoyancy,
MAE is barely influenced by the change, while Ours achieves better sensi-
tivity than Pix2Pix, NoMod, and cBEGAN. 3rd Row: All models respect the
closed boundary condition. Dashed yellow lines indicate the heights of the
reference plumes for clearer comparison.

the results shown in the second row should spread out more in
space. Here, the overlays of the unmodified buoyancy highlight the
differences in behavior:While Pix2Pix,MAE, and cBEGAN stay close
to their restoration results, ignoring buoyancy changes, the NoMod
model yields only a slightly stronger buoyancy. Our full method
finally achieves a sensitivity that is very close to the reference.

The results in third row, on the other hand, are generated with a
modified boundary condition.With a closed boundary in the original
scene, the velocity on the sides of the domain is pointing downwards
(as indicated by the green color). After modifying the boundary
condition to open, the velocity of the reference changes and moves
upwards, visualized by a red color. At the same time, we expect the
density to rise higher, without overly changing it’s local structure.
According to the velocity visualizations, all models manage to fulfill
the open boundary condition. However, our full model manages to
recover the reference with boundarymodifications much better than
others, indicating a better disentangled control. Similar conclusions
can be drawn from Fig. 20, where the scene in the first row originally
has an open boundary with a buoyancy of 2× 10−4. It is modified by
decreasing the buoyancy on the second row and a closed boundary
condition in the third row. Ourmodel still presents themost sensitive
control, while Pix2Pix, NoMod, and cBEGAN are not far behind. We
have observed that lower velocities are typically easier to generate,
and hence this modification represents a slightly easier setting than
the increased one.
For quantitative evaluations, we compare the modified results

with regard to a series of simulations using a regular solver with
gradually modified conditions. An example with increased buoyancy
is shown in Fig. 21. To measure the distance to simulaiton candidates
with buoyancy from 1×10−4 to 2.5×10−4, we use L2, LPIPS [Zhang
et al. 2018] and LSiM [Kohl et al. 2020] metrics for this scene over
the course of 150 frames. As L2 is purely local and potentially
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𝑑170, buo × 2 𝑑170, buo × 1 𝑑170, buo × 1.5 𝑑170, buo × 2 𝑑170, buo × 2.5

u170, buo × 2 u170, buo × 1 u170, buo × 1.5 u170, buo × 2 u170, buo × 2.5

𝜔170, buo × 2 𝜔170, buo × 1 𝜔170, buo × 1.5 𝜔170, buo × 2 𝜔170, buo × 2.5

Ours Ref-buo×1 Ref-buo×1.5 Ref-buo×2.0 Ref-buo×2.5

Avg. on this scene Ref-1.0 Ref-1.5 Ref-2.0 Ref-2.5
L2 ↓ 0.029 0.019 0.012 0.014
LPIPS↓ 0.200 0.145 0.113 0.127
LSiM↓ 0.225 0.168 0.137 0.160

Fig. 21. Evaluation for increased buoyancy. Compared to references with
different buoyancy, ourmodel matches the correct one with closest distances
in terms of L2, LPIPS and LSiM.

unreliable, we include it only for completeness. LPIPS is widely
used for images as a perceptual distance, while LSiM is specialized
on numerical simulations. Evaluating them with density fields, their
statistics offer a consistent conclusion: Our method matches the
correct buoyancy condition of 2.0 × 10−4 with the closest distance,
and is least similar to the 1.0 × 10−4 one. Although L2, LPIPS and
LSiM show similar behavior, LSiM offers a clearer separation with
larger gaps between candidates. Thus, we focus on LSiM evaluations
for the remainder of tests.
Table 2 shows the averaged score for Pix2Pix, MAE, cBEGAN,

NoMod, and Ours on 1200 density frames. Our full model ranks first
by fulfilling all modifications. While all models work well under
easy modifications with weaker buoyancy and closed boundary, dif-
ferences appear in tough modification tests. In the test with buo×2,
while Ours matches the correct reference, NoMod has similar dis-
tances to candidates with buo×1.5 and buo×2.0. cBEGAN, MAE,
and Pix2Pix perform equally bad, matching false candidates with
buo×1.0 and buo×1.5 much better than the correct one. In the open
boundary tests, their distances to the true references are likewise
much larger in comparison to ours.

Generalization of Buoyancy Directions
In this section, we train and evaluate our method and cBEGAN
on a more challenging task with varying buoyancy directions in
2D. By including (1 + 𝑐𝑜𝑠𝜙, 1 + 𝑠𝑖𝑛𝜙) in the latent space of the s
SubNet, we train the two models on a new dataset. This training
dataset contains simulations with four buoyancy directions, i.e. 𝜙 =

0.4𝜋, 1.9𝜋, 1.4𝜋, 0.9𝜋 , shown as blue arrows( 1 - 4 ) in Fig. 22. On
the first row, we show a restoration test where velocity is generated
from the density input only. Compared to the ground-truth velocity
which has 𝜙 = 1.9𝜋 ( 2 ), our method and cBEGAN behave similarly
for the single-frame restoration on the first row. This is also verified
by their close static LSiM and L1 errors in the table (Restoration
of u) below. Averaged on 20 sequences with 60 frames each, the
temporal LSiM and L1 errors show that our model performs better
when used recurrently as a simulator.

On the second row, the direction of 𝜙 = 0.4𝜋 ( 1 ) is used as a
modified condition, in addition to the density input. Results of both
methods successfully differ from the restoration ones. However,

GT
Ours 
Restore

cBEGAN
Restore

Ours 
Modified

cBEGAN
Modified

⑤
Unseen

①②③④
Training Directions

GT

GTOurs cBEGAN

Ours cBEGAN

t=60

t=120

□ □

Static Tests

Temporal Tests

Restoration
of u

static
LSiM ↓

static
L1 ↓

temporal
LSiM ↓

temporal
L1 ↓

Modification
Tests

LSiM to
True Ref.↓

LSiM
to False
Candidates.↑

Ours 0.187 0.081 0.209 0.102 Ours 0.153 0.228
cBEGAN 0.190 0.080 0.239 0.112 cBEGAN 0.177 0.213

Fig. 22. Evaluation for varying buoyancy directions.

from their vorticity fields, we can see that ours shows a clear differ-
ence, while cBEGAN shows less changed and blurry vorticity. We
further evaluate the modified condition task with a temporal test,
shown on the last two rows of Fig. 22. Starting from the same initial
density setup with a buoyancy direction of 𝜙 = 0.25𝜋 ( 5 ), both
cBEGAN and Ours are close to the reference for the first 60 time
steps. Note that this buoyancy direction is unseen to the models
during training and cBEGAN begins to show errors in its vorticity
filed after 60 steps. Consequently, in the later time step with 𝑡 = 120,
our model follows the reference much better than cBEGAN. This
scene is also shown in our supplemental video. On 12 temporal test
cases with 200 frames each, we calculate LSiM errors to the true ref-
erences with 𝜙 = 0.25𝜋 ( 5 ) and false candidates with 𝜙 = 0.05𝜋 or
𝜙 = 0.45𝜋 . The averaged LSiM distances in the table (Modification
Tests) show that our method can fulfill buoyancy directions more
sensitively.

B KEY-FRAME OPTIMIZATIONS
Besides the direct inference of velocity results, our model can be
used in optimization tasks due to its inherent differentiability. As a
proof of concept, we present an example of a keyframe optimization
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Key-Fr. Blend In-between Frame,𝑑5

Key-Fr. Blend In-between Frame,𝑑5 Key-Fr. Blend In-between Frame,𝑑5

Fig. 23. Tests of keyframe optimizations. From top to bottom and left to
right, we test with a normal plume scene, a scene with unknown inflow, a
scene with artificial shapes, and a scene with largely changing shapes.

task, with a straightforward objective function and a simple gradient
descent algorithm.
Given density configurations at two keyframes as input, we lin-

early interpolate 9 density frames in between to get the initial den-
sity state 𝑑s0 = [𝑑00 , 𝑑

1
0 , ..., 𝑑

9
0 , 𝑑

10
0 ]. Here, we use subscripts as it-

eration steps and the subscripts stand for frame numbers. Taking
these 11 frames as density inputs, our velocity inference model is
used to calculate their velocities independently, i.e. us𝑖 = [𝐺 (𝑑0

𝑖
, s𝑖 ),

𝐺 (𝑑1
𝑖
, s𝑖 ) ...,𝐺 (𝑑9

𝑖
, s𝑖 ),𝐺 (𝑑10

𝑖
, s𝑖 )].We then optimize for the in-between

density frames as degrees of freedom, a consistent set of physi-
cal parameters for all 11 frames, and a time scale parameter ℎ, i.e.
{𝑑s𝑖 , s𝑖 , ℎ}, to minimize a short-term goal of

∥𝑑𝑡+1𝑖 − A(𝑑𝑡𝑖 , ℎ𝐺 (𝑑𝑡𝑖 , s𝑖 ))∥ + ∥𝑑𝑡−1𝑖 − A(𝑑𝑡𝑖 ,−ℎ𝐺 (𝑑𝑡𝑖 , s𝑖 ))∥,

a long-term goal of𝑑10𝑖 − A(𝑑0𝑖 ,
∫ 𝑡=9

𝑡=1
ℎ𝐺 (𝑑𝑡𝑖 , s𝑖 ))

+𝑑0𝑖 − A(𝑑10𝑖 ,−
∫ 𝑡=9

𝑡=1
ℎ𝐺 (𝑑𝑡𝑖 , s𝑖 ))

 .
We include a regularization term ∥ 𝜕ℎ𝐺 (𝑑𝑡

𝑖
,s𝑖 )

𝜕𝑑𝑖 ,s𝑖 ,ℎ
∥. This gradient penalty

regularization term helps to stabilize velocity fields.
As shown in Fig. 23 and the supplemental video, we achieve

smooth and natural flow with a rising plume scene as input. Opti-
mizing a shallow inflow region below 𝑑s𝑖 in addition to {𝑑s𝑖 , s𝑖 , ℎ},
our results manages to match keyframes with unknown inflows as
well. Applied to artificial shapes, our results transition smoothly,
although the motion is driven away from the behaviour of a freely
moving plume in order to match the keyframes. Optimizing on the
full resolution of 9 density frames, our proof-of-concept impleme-
nation of this optimization is not overly fast: it takes 3000 iterations
to converge, spending around 30 minutes for every two keyframes

Vorticity Conf. MAE +𝜔conf. Ours +𝜔conf. MAE + 𝑎𝜔conf. Ours + 𝑎𝜔conf.

𝑑140 , Ref

u140 , Ref

𝜔conf,140 , Ref

𝑑140 , MAE

u140 , MAE

𝜔140 , MAE

𝑑140 , Ours

u140 , Ours

𝜔140 , Ours

𝑑140 , MAE+𝑎𝜔conf.

u140 , MAE+𝑎𝜔conf.

𝜔140 , MAE+𝑎𝜔conf.

𝑑140 , Ours+𝑎𝜔conf.

u140 , Ours+𝑎𝜔conf.

𝜔140 , Ours+𝑎𝜔conf.

Fig. 24. When taking the 𝜔conf from the vorticity confinement method
as an additional condition, the generated velocity contains vorticity (𝜔140,
Ours) that matches the spatial distribution but not the absolute scale of
𝜔conf. With a simple linear scaling, our result could match the vorticity
confinement scene much better. As a comparison, MAE doesn’t match the
spatial distribution and a linear scaling is not helpful for this case.

Mantaflow Ours

𝑑90

u90

𝑑90

u90

Fig. 25. At locations on the trajectory of the moving obstacle, our velocity
output is different to the reference because our model does not have histor-
ical information including previous positions and velocities of obstacles.

on a Nvidia Tesla v100. A multi-level optimization strategy could
be applied in the future to reduce the computation time.

C FAILURE CASES
In order to test the degree of fulfillment for vorticity control, we
apply our model on scenes generated with the vorticity confine-
ment method [Fedkiw et al. 2001], as shown in Fig. 24. Note that
simulations with vorticity confinement are very different from our
training dataset. Ideally, the modified result with 𝜔𝑐𝑜𝑛𝑓 as a con-
ditional input should resemble the reference scene with vorticity
confinement. From Fig. 24 (𝜔140, Ours), we can see that our result
has a reasonable vorticity distribution in space, but the absolute
strength is smaller than 𝜔𝑐𝑜𝑛𝑓 , resulting in a different simulation
result. By using a simple linearly increased conditional input 𝑎𝜔conf,
with 𝑎𝑡 = ∥𝜔conf,𝑡−1∥/∥∇×𝐺 (𝑑𝑡−1, 𝑎𝑡−1𝜔conf,𝑡−1)∥, we find that the
result can match the reference much better. By contrast, this does
not help the MAE model for which the spatial distribution is not
matched well. This indicates that the vorticity control of our method
is very sensitive to high-frequency features, while, low-frequency
features, e.g., the overall strength, can be improved, potentially with
a deeper vorticity sub-network.
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In Fig. 25, we show our result with regard to a reference simulation
with moving obstacles. In this scenes, velocity at the trajectory of
a moving obstacles is usually influenced by the historical velocity
of the obstacle when passing by. This can cause difficulties for
our models when obstacles are moving into the occupied region
from empty regions that do not contain density. As shown in the
rectangular region of Fig. 25, our result differs from the references
for the trajectory of the star-shape obstacle, since our model does
not receive the historical information of the obstacle motion. While
this could be problematic for accurate velocity inference, it is usually
not a big issue for animation purposes, since users are typically less
concerned with empty regions in such applications.

D NETWORK ARCHITECTURES AND
HYPER-PARAMETERS

In Table 3, we define the notation, specify our network architectures,
and give hyper-parameters used for training. Discriminators use
almost the same architecture as the generators, except for different
numbers of channels for inputs and outputs. The curl operation at
the end of generators is also not used in the discriminators. We train
2D adversarial models with the Adam optimizer for 160k iterations.
In order to shorten the training time, the first stage with 80k iter-
ations is trained with randomly cropped regions in resolution of
642. The second 80k is trained with full resolution of 2562. Using
the Nvidia Tesla v100 GPU with 16G memory, the two stages take 2
and 10 hours receptively. Expanding the 2D network to 3D directly
with a spatial resolution of 2563 would result in a large model re-
quiring huge amounts of GPU memory. Therefore, we add a few
convolution and transpose convolution layers at the beginning and
end to reduce the spatial resolution of the network, as displayed in
Table 3. Based on the reduced size, 3D networks are trained with the
Adam optimizer for 80k iterations with an input resolution of 2563,
spending around 180 hours on NVIDIA Quadro RTX 8000 with 48G
memory. All training runs use a batch size of 3 and a learning rate
of 2 × 10−4.

Table 3. Notations and Network Architectures
Notation

spatial resolution in N-D, 𝑁 =2 or 3 w, which means w𝑁

bicubic up-/down-scaling by 4 BicUp4/BicDown4
concatenation,
point-wise product ⊕, ⊙
convolution or
transposed convolution 𝐶/𝐶𝑇 (input, reso-lution,

kernel
size , outputchannel,

stride
size )

instance normalization InNorm
averaged pool/unpool pool/unpool (input, target_resolution)

2D Generators 3D Generators

𝑑 → 𝑑𝑖𝑛 ;
𝑜𝑚 ⊕ 𝑜u → 𝑜𝑖𝑛 ;
64 or 256 → w;

BicDown4(𝑑) → 𝑙𝑑 ;
𝐶 (𝑑, 256, 7, 8, 2),→ 𝑙𝑑0;

𝑙𝑑 +𝐶 (𝑙𝑑0, 128, 3, 1, 2),→ 𝑑𝑖𝑛 ;
BicDown4(𝑜𝑚 ⊕ 𝑜u) → 𝑜𝑖𝑛 ;

64 → w;
without obstacle: 𝑑𝑖𝑛 → 𝑙𝑖𝑛 ; with obstacle: 𝑑𝑖𝑛 ⊕ 𝑜𝑖𝑛 → 𝑙𝑖𝑛 ;

𝐶 (𝑙𝑖𝑛, 𝑤, 7, 32, 1), InNorm, ReLU → 𝑙0;
𝐶 (𝑙0, 𝑤, 3, 64, 2), InNorm, ReLU → 𝑙1;

𝐶 (𝑙1, 𝑤/2, 3, 128, 2), InNorm, ReLU → 𝑙2;
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝐵𝑙𝑜𝑐𝑘 (𝑙2 + 𝑖, 𝑤/4) → 𝑙3+𝑖 with 𝑖 = 0, ..., 5;

𝐶𝑇 (𝑙7, 𝑤/4, 3, 64, 2), InNorm, ReLU → 𝑙8;
𝐶𝑇 (𝑙8, 𝑤/2, 3, 32, 2), InNorm, ReLU → 𝑙9;

∇ ×𝐶𝑇 (𝑙9, 𝑤, 7, 3, 1) → 𝑙𝑜𝑢𝑡

∇ ×𝐶𝑇 (𝑙9, 64, 7, 3, 3) → 𝑙10
𝐶 (BicUp4(𝑙10), 256, 7, 8, 1) → 𝑙11;

𝐶 (𝑙11, 256, 3, 3, 1) → 𝑙𝑜𝑢𝑡 ;
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝐵𝑙𝑜𝑐𝑘 (𝑙2 + 𝑖) s-𝑆𝑢𝑏𝑁𝑒𝑡

𝐶 (𝑙2+𝑖 , 𝑤4 , 3, 128, 1) , InNorm ReLU→ 𝑡2+𝑖 ;
𝐶 (𝑡2+𝑖 , 𝑤/4, 3, 128, 1) , InNorm→ 𝑟2+𝑖 ;
if 𝑖 = 0, 1, 2, or 4 : 𝑟2+𝑖 + 𝑙2+𝑖 → 𝑙3+𝑖 .
if i=3:
𝑟2+𝑖+𝑙2+𝑖→𝑙𝑥 ;
s-𝑆𝑢𝑏𝑁𝑒𝑡 (𝑙𝑥 )⊕KE-𝑆𝑢𝑏𝑁𝑒𝑡 (𝑙𝑥 )⊕𝑙𝑥→𝑙3+𝑖 ;

if i=5:
𝑟2+𝑖+𝑙2+𝑖→𝑙𝑤 ;
𝜔-𝑆𝑢𝑏𝑁𝑒𝑡 (𝑙𝑤 )⊕𝑙𝑤→𝑙3+𝑖 ;

𝐶 (𝑙𝑥 , 𝑤/4, 7, 16, 1) , ReLU→ 𝑥1;
pool(𝑥1, 8) → 𝑥2;
flat(𝐶 (𝑥2, 8, 3, 16, 1)) → 𝑥3;
𝐶 (𝑥3, 1, 1, 2, 1) → s𝑜𝑢𝑡 ∈ R2;
s𝑜𝑢𝑡 ⊕ s → s𝑖𝑛 ;

reshape(𝐶 (s𝑖𝑛 , 1, 1, 8𝑁 ×16, 1), 8𝑁 ×16) → 𝑥4 ;
𝐶 (𝑥4, 8, 7, 16, 1) → x5;
unpool(𝑥5, 𝑤/4) → s-𝑆𝑢𝑏𝑁𝑒𝑡 (𝑙𝑥 ) ;

KE-𝑆𝑢𝑏𝑁𝑒𝑡 𝜔-𝑆𝑢𝑏𝑁𝑒𝑡
𝐶 (𝑥1, 𝑤/4, 3, 8, 2) , InNorm, ReLU→ 𝑥6 ;
𝐶 (𝑥6, 𝑤/8, 3, 4, 2) , InNorm→ 𝑥7 ;
𝐶 (𝑥7, 𝑤/16, 3, 1, 2) ,→ KE𝑜𝑢𝑡 ∈ R(

𝑤
16 )

2 or 3
;

KE𝑜𝑢𝑡 ⊕ KE → KE𝑖𝑛 ;

𝐶 (KE𝑖𝑛 , 𝑤/16, 3, 2, 1) → 𝑥8 ;
𝐶 (𝑥8, 𝑤/16, 3, 1, 1) → x10 ;
unpool(𝑥10, 𝑤/4) → KE-𝑆𝑢𝑏𝑁𝑒𝑡 (𝑙𝑥 ) ;

𝐶𝑇 (𝑙𝑤 , 𝑤/4, 3, 32, 2) , InNorm, ReLU→ 𝑤1 ;
𝐶𝑇 (𝑤1, 𝑤/2, 3, 16, 2) , InNorm, ReLU→ 𝑤2 ;
𝐶 (𝑤2, 𝑤, 7, 1 or 3, 1) → 𝜔𝑜𝑢𝑡 ∈ R𝑤2 or 3𝑤3

;
𝜔𝑜𝑢𝑡 ⊕ 𝜔 → 𝜔𝑖𝑛 ;

𝐶 (𝜔𝑖𝑛 , 𝑤, 7, 16, 1) , InNorm, ReLU→ 𝑤3 ;
𝐶 (𝑤3, 𝑤/2, 3, 24, 2) , InNorm, ReLU→ 𝑤4 ;
𝐶 (𝑤4, 𝑤/2, 3, 32, 2) → 𝜔-𝑆𝑢𝑏𝑁𝑒𝑡 (𝑙𝑤 ) ;

2D Parameters 3D Parameters
𝜆𝑎𝑑𝑣, 𝜆𝑚𝑜𝑑 , 𝜆𝑙1 = 0.2, 0.6, 1.0 𝜆𝑎𝑑𝑣, 𝜆𝑚𝑜𝑑 , 𝜆𝑙1 = 0.2, 0.3, 1.0
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