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Fig. 1. Renderings and visualizations of fluid reconstructions. Using sparse image sequences, we learn continuous radiance and velocity fields to represent fluid scenes. We can
handle synthetic and real scenes (on the left) as well as hybrid scenes (on the right). Our method supports arbitrary obstacles and unknown lighting conditions flexibly.

High-fidelity reconstruction of dynamic fluids from sparse multiview RGB
videos remains a formidable challenge, due to the complexity of the un-
derlying physics as well as the severe occlusion and complex lighting in
the captured data. Existing solutions either assume knowledge of obstacles
and lighting, or only focus on simple fluid scenes without obstacles or com-
plex lighting, and thus are unsuitable for real-world scenes with unknown
lighting conditions or arbitrary obstacles. We present the first method to
reconstruct dynamic fluid phenomena by leveraging the governing physics
(ie, Navier -Stokes equations) in an end-to-end optimization from a mere
set of sparse video frames without taking lighting conditions, geometry
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information, or boundary conditions as input. Our method provides a con-
tinuous spatio-temporal scene representation using neural networks as the
ansatz of density and velocity solution functions for fluids as well as the
radiance field for static objects. With a hybrid architecture that separates
static and dynamic contents apart, fluid interactions with static obstacles
are reconstructed for the first time without additional geometry input or
human labeling. By augmenting time-varying neural radiance fields with
physics-informed deep learning, our method benefits from the supervision of
images and physical priors. To achieve robust optimization from sparse input
views, we introduced a layer-by-layer growing strategy to progressively in-
crease the network capacity of the resulting neural representation. Using our
progressively growing models with a newly proposed regularization term,
we manage to disentangle the density-color ambiguity in radiance fields
without overfitting. A pretrained density-to-velocity fluid model is leveraged
in addition as the data prior to avoid suboptimal velocity solutions which
underestimate vorticity but trivially fulfill physical equations. Our method
exhibits high-quality results with relaxed constraints and strong flexibility
on a representative set of synthetic and real flow captures. Code and sample
tests are at https://people.mpi-inf.mpg.de/~mchu/projects/PI-NeRF/.

CCS Concepts: • Computing methodologies� Neural networks;
Physical simulation.

Additional KeyWords and Phrases:NeRF, Physics-Informed Deep Learn-
ing, Fluid Reconstruction
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1 INTRODUCTION
Obeying general laws of physics, fluid phenomena are ubiquitous
and various. The understanding of fluids benefit a wide range of
activities including weather forecasting [Bauer et al. 2015], vehi-
cle manufacturing [Bushnell and Moore 1991], medicine metabo-
lism [Shi et al. 2010], and visual effects [Kim et al. 2008; Xie et al.
2018]. In studying the fluid behaviors, one of the core tasks is to
estimate the invisible velocity. In general, velocity can be obtained
either by solving physical equations with numerical solvers [Bridson
2015] or by measuring experimentally, e.g. particle image velocime-
try (PIV) [Elsinga et al. 2006], both with different pros and cons.

With the progress in hardware and algorithms, numerical solvers
achieve high accuracy in “forward” fluid simulation tasks, e.g. an-
alyzing canonical flows, where experienced engineers are able to
provide a full set of initial and boundary conditions, etc. However,
due to partially available initial conditions, common users cannot
easily apply them in an “inverse” manner to handle particular fluid
phenomena in real life, e.g. steam rising up from a teapot. Experi-
mental techniques, including PIV, allow users to estimate real-life
fluid behavior. In these works [Grant 1997; Xiong et al. 2017], the
scope is limited to simple scenes with fluid as the main objective.
By estimating the volumetric distribution of a passive scalar, e.g.
tracer particles, colorful dye, or smoke, from image modalities, the
underlying motion is then inferred from the transport and physical
equations. As PIV methods require specialized lab settings, there
has been growing interest in fluid reconstructions from RGB im-
ages [Gregson et al. 2014; Franz et al. 2021]. Despite improvements
in reconstruction quality and reduction of hardware, existing ap-
proaches are still vulnerable to scenes with unknown illumination
or occluding obstacles.
We aim to overcome these difficulties, handle fluid scenes with

unknown lighting and arbitrary obstacles, and advance the goal of
capturing fluids in the wild. In addition to reducing the constraints
for fluid capture, being able to handle fluid scenes with obstacles is
an important step towards analyzing fluid-obstacle interactions.

Based on recent progress in view synthesis using neural radiance
fields (NeRF) [Lombardi et al. 2019; Mildenhall et al. 2020], we first
augment the spatial scene representation in the time dimension and
learn a time-varying neural radiance field. Taking RGB videos of a
scene with dynamic fluid as input, the time-varying NeRF learns to
encode a spatiotemporal radiance field with a Multi-Layered Per-
ceptron (MLPs). Originally proposed for static scenes, NeRF uses
differentiable rendering to gather information from multiview im-
ages with different camera poses. Correspondingly, in our case, it is
important to apply differentiable physics to unify information from
video frames at different time steps as a dynamic NeRF. Thus, we
propose to use physics-informed deep learning technologies [Raissi
et al. 2020] and use another MLP to represent the continuous spatio-
temporal velocity field. With jointly applied differentiable rendering
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Fig. 2. Modules and supervision in our method. With the comprehensive supervision
of images, physical-priors, and a published fluid network, we present neural fluid fields
with radiance fields for static and dynamic components, and velocity fields for fluids.

and physics models, we manage to learn the continuous spatiotem-
poral radiance and velocity fields in a dynamic scene and supervise
them using image sequences and physical laws end to end. Similar to
Physics-Informed Neural Networks (PINN), partial differential equa-
tions (PDE) are calculated using the exact, mesh-free derivatives of
the velocity model via auto-differentiation without discretization.

Through a seamless intertwining of NeRF and PINN, our method
learns physics-informed neural fluid fields from image sequences
end to end. It is unrestrained by lighting conditions, geometry in-
formation, or the initial and boundary conditions, and is therefore
suitable for hybrid scenes with obstacles. Our method also face the
same issues of PINN methods: the training task is challenging due
to the complex non-linear optimization landscape shaped by PDE
constraints. Specifically, in fluid reconstruction, this issue tends to
manifest itself as underestimated vorticity and density overfitting
to given views. While overfitting problems are usually handled with
regularization terms, more data, or model-based supervision, we
propose to use a regularization term on the density and a published
pre-trained velocity model [Chu et al. 2021] to reduce the vorticity
underestimation. While both Neural Volumes [Lombardi et al. 2019]
and the static NeRF have to use a large number of images with
different camera poses to properly disentangle the radiance color
and opacity, we show that our density regularization term helps to
effectively disentangle this color-density ambiguity of the radiance
field, which eventually allows us to work with sparse camera views.
The general pipeline of our algorithm is illustrated in Fig. 2.

To summarize, our work makes the following contributions:
• Wepropose the first method for reconstructing dynamic fluids
with high quality from sparsemulti-view RGB videos, without
access to any lighting and geometry information.
• We introduce a hybrid representation for dynamic fluid scenes
interacting with static obstacles. It allows automatic separa-
tion of dynamic and static components without any human
labelling, which is previously not possible.
• We propose comprehensive supervision using images, phys-
ical priors (i.e., Navier-Stokes equations), as well as a pre-
trained fluid model as data prior to prevent sub-optimal solu-
tions with underestimated vorticity.
• We propose a progressively growing model with a new regu-
larization term to penalize “ghost density”, an artifact caused
by color-density ambiguity.Together, overfitting to sparse
given views is avoided.

With these, our method relaxes the requirements of fluid recon-
struction, enables the capture of fluid behavior with obstacles, and
achieves state-of-the-art results in both synthetic and real scenes.
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2 RELATED WORK
We summarize relatedwork in fluid reconstruction, physics-informed
deep learning, and neural scene representations.

2.1 Fluid Reconstruction Methods
Several approaches have been proposed to reconstruct fluids from
observations of visible light measurements. There are established
methods that use active sensing with specialized hardware and light-
ing setups [Atcheson et al. 2009; Gu et al. 2013; Ji et al. 2013] and
particle imaging velocimetry (PIV) [Grant 1997; Elsinga et al. 2006;
Xiong et al. 2017] injecting passive markers into fluid flows. PIV
methods usually require specialized setups for particles, lighting,
and capture. Many flow phenomena, e.g. smoke and fire, have vis-
ible elements which can easily be recorded. In the following, we
focus on fluid reconstruction using RGB images to alleviate the need
for specialized setups. Early work [Gregson et al. 2014] uses lin-
ear image formation to extract passive quantities from simple RGB
images and reconstruct fluids with physical priors. Extending this
direction, ScalarFlow [Eckert et al. 2019] reconstructs real-world
smoke plumes from sparse views and Zang et al. [2020] use inter-
polated views as further constraints. Instead of using linear image
formation, the Global Transport method [Franz et al. 2021] uses
differentiable rendering to allow end-to-end optimization. Qiu et al.
[2021] train convolutional networks end-to-end to estimate flow
from sequences of orthogonal views. These methods either require
known lighting conditions or ignore lighting altogether. Most re-
lated work reconstruct velocity on discrete grids, while we employ
MLPs as an ansatz for fluid and present continuous velocity fields.

2.2 Physics Informed Deep Learning
Physics-informed deep learning respects physical equations govern-
ing a certain problem, e.g. Partial Differential Equations (PDE), by
coupling them into the learning process. These methods [Pakravan
et al. 2021; Raissi et al. 2019] have emerged as essential tools for
various challenging forward and inverse problems. By coupling
differentiable numerical solvers into training, physically plausible
solutions can be obtained for dynamic problems, e.g. cloths [Geng
et al. 2020] and fluids [Um et al. 2020; Gibou et al. 2019]. Besides us-
ing discretized numerical solvers, PINN [Raissi et al. 2019] proposes
employing MLPs as continuous network surrogates for dynamics.
Early MLP-based models [Lagaris et al. 1998; He et al. 2000; Mai-
Duy and Tran-Cong 2003] use a small number of hidden layers and
hyperbolic tangent or sigmoid nonlinearities. The network capacity
is restricted. Current approaches [Sirignano and Spiliopoulos 2018;
Raissi et al. 2020; Berg and Nyström 2018] advanced on equation
sophistication and dimensionality by capitalizing on new optimiza-
tion frameworks and autodifferentiation for training MLP-based
networks. Recent studies [Sitzmann et al. 2020; Tancik et al. 2020]
have demonstrated that the commonly used MLPs struggle with
high-frequency information and propose new periodic activation
functions to represent complex natural signals and their derivatives.

2.3 Neural Representations
In scene representations, neural representations have recently been
widespread for their expressiveness and compactness.

Neural intermediate representations. To synthesize novel views of
a 3D scene, multi-plane images [Zhou et al. 2018; Mildenhall et al.
2019; Srinivasan et al. 2019], multi-sphere images [Broxton et al.
2020] and proxy geometries [Zhang et al. 2021; Philip et al. 2019] are
proposed to build intermediate neural representations frommultiple
views. Novel views can be rendered with learned representations in
interpolation or extrapolation manners. Eslami et al. [2018] propose
to learn a neural embedding from observed images of a scene and
infer unseen novel views. Granskog et al. [2020] further partition
and compress the neural embedding into concise components which
enables compositional rendering.

Neural explicit representations. By leveraging inverse rendering,
classic 3D representations have been adapted to neural versions.
Yifan et al. [2019] introduce differentiable surface splatting to en-
able point-cloud-based geometry processing from images. Deep-
Voxels [Sitzmann et al. 2019a] learns a 3D feature representation
and stores features in a voxel grid for novel view synthesis. Neu-
ral Volumes [Lombardi et al. 2019] encodes objects in a voxel grid
and learns an inverse mapping to decode voxelized radiance. These
grid-based discretization suffers from resolution limitations.

Neural implicit representations. To avoid the resolution limita-
tion of discretization, implicit 3D representations, including signed
distance functions (SDF) [Park et al. 2019; Chabra et al. 2020], un-
signed distance functions [Chibane et al. 2020], and occupancy
fields [Chen and Zhang 2019; Peng et al. 2020], are parameterized
with neural networks to represent 3D shapes. Furthermore, these
continuous representations are generalized to coordinate-based net-
works. For 3D shapes with textured surfaces, scene representation
networks [Sitzmann et al. 2019b] learn SDFs and texture color for
each coordinate. Niemeyer et al. [2020] derive implicit gradients to
enable optimization and learn the surface radiance. Instead of SDF,
PIfu [Saito et al. 2019] proposes to predict surface occupancy and
color for coordinates. Different from scene representations based
on opaque surfaces, NeRF [Mildenhall et al. 2020] represents scenes
as implicit volumes and trains the coordinate-based networks to
approximate continuous volumetric radiance fields. After training,
novel views are rendered by ray marching. Many extensions have
been proposed for fast rendering [Liu et al. 2020; Reiser et al. 2021;
Yu et al. 2021; Garbin et al. 2021; Hedman et al. 2021], geometry
reconstruction [Yariv et al. 2020; Oechsle et al. 2021; Yariv et al.
2021; Wang et al. 2021], generative image synthesis [Schwarz et al.
2020; Niemeyer and Geiger 2021; Gu et al. 2021], reflectance for
opaque surfaces [Srinivasan et al. 2021], and participating media
reconstruction [Zheng et al. 2021].

2.4 Neural Representations for Dynamic Scenes
As the above representations apply mainly to static scenes, there
has been a steady effort targeting representations for dynamic
scenes. Neural Volumes [Lombardi et al. 2019] and its follow-up
works [Wang et al. 2020; Lombardi et al. 2021; Raj et al. 2021]
employ an encoder-decoder to transform input images to a vol-
ume representation, followed by differentiable ray-marching. Some
works [Tretschk et al. 2021; Park et al. 2020; Li et al. 2020; Park et al.
2021] design a dedicated deformation network to model the dense
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3D motions of points between adjacent frames. Xian et al. [2020]
model dynamic scenes as 4D space-time irradiance fields. Several
works focus on human body rendering. Gafni et al. [2020] condition
NeRF on face pose to represent a 4D facial avatar. Neural Body [Peng
et al. 2021b] uses a SMPLmodel as a 3D proxy and attaches learnable
features on each SMPL mesh vertices as anchors to connect spaces
across difficult frames. Su et al. [2021] present an articulated NeRF
based on a human skeleton for refining human pose estimation.
Some works [Liu et al. 2021; Peng et al. 2021a; Chen et al. 2021]
propose a geometry-guided deformable NeRF method for warping
the space in different poses to a shared canonical space with a SMPL
model as a 3D proxy. Neural Actor [Liu et al. 2021] learns pose-
dependent deformation and appearance to model dynamic effects.
Neural Human Performer [Kwon et al. 2021] proposes a generaliz-
able NeRF based on a SMPL model with a temporal transformer and
a multi-view transformer for new pose and appearance synthesis.
In contrast, we focus on modeling the dynamic fluid with a new
neural representation incorporated with physics-based constraints,
which has not received much attention yet.

3 NEURAL SCENE REPRESENTATION FOR FLUIDS
Based on the universal approximation theorem, our method uses
neural networks to represent a fluid scene in space and time. Math-
ematically, we use two MLP-based networks,

𝐹𝑣𝑖𝑠 : (𝑥,𝑦, 𝑧, 𝑡) → (c, 𝜎) and 𝐹ℎ𝑖𝑑 : (𝑥,𝑦, 𝑧, 𝑡) → (u) (1)

to approximate the continuous functions of the radiance field and
velocity field, respectively. The input, (𝑥,𝑦, 𝑧, 𝑡), is the coordinate of
a 4D location in space and time, the radiance output of 𝐹𝑣𝑖𝑠 contains
the emitted color c = (𝑐𝑟 , 𝑐𝑔, 𝑐𝑏 ) and the optical density 𝜎 . The ve-
locity output of 𝐹ℎ𝑖𝑑 describes the 3D motion vector u = (𝑢𝑥 , 𝑢𝑦, 𝑢𝑧)
at that point and time. “hid” stands for the word “hidden”, since
the velocity field is not directly observed. As a representation for
fluid scenes, the radiance field provides us useful information about
the lighting condition, object geometry, and the density distribu-
tion of the passive scalar in the scene. Meanwhile the velocity field
describes the invisible dynamics which is important for further
analysis of pressure or body forces for fluid mechanics. While it
is possible to supervise 𝐹𝑣𝑖𝑠 directly using video sequences based
on differentiable volumetric rendering, 𝐹ℎ𝑖𝑑 has to be trained indi-
rectly from the density distribution of the passive scalar via physics
equations. Note that physics equations are associated with mass
density 𝑑 , which can be considered as being proportional to the
optical density 𝜎 according to the Beer–Lambert law.

In the following, we describe the image-based supervision of 𝐹𝑣𝑖𝑠
in Sec. 3.1 and the physical equation-based supervision of 𝐹ℎ𝑖𝑑 in
Sec. 3.2. Facing the highly non-linear and challenging optimization
landscape formed by PDEs, we propose amodel-based supervision in
Sec. 3.3 to avoid sub-optimal solutions of 𝐹ℎ𝑖𝑑 with underestimated
vorticity. In order to obtain a valid density distribution which will
determine the best possible accuracy of 𝐹ℎ𝑖𝑑 , we propose to tackle
the color-density ambiguity (Sec. 3.4) and disentangle the fluid and
obstacle density (Sec. 3.5), respectively.

3.1 Image-Based Radiance Estimation
Briefly summarized, the static NeRF [Mildenhall et al. 2020] learns
a static neural radiance field 𝐹𝑁𝑒𝑅𝐹 : (𝑥,𝑦, 𝑧, 𝜃, 𝜙) → (c, 𝜎) with
a set of posed images though volumetric rendering. Here, (𝑥,𝑦, 𝑧)
is the coordinate of a position in 3D space and (𝜃 , 𝜙) defines a ray
direction as a 3D Cartesian unit vector d. Considering the pixel 𝑗 of
image 𝑖 , point samples are queried along the camera ray 𝑟𝑖 𝑗 (ℎ) =
o𝑖 +ℎd(𝜃𝑖 𝑗 , 𝜙𝑖 𝑗 ), where ℎ denotes the parametric distance. The color
of the pixel is approximated with the numerical quadrature rule:

C(𝑟𝑖 𝑗 ) =
𝐾∑︁
𝑘=1

𝑇 (ℎ𝑘 )𝛼 (ℎ𝑘 )c(ℎ𝑘 ), where 𝑇 (ℎ𝑘 ) = 𝑒𝑥𝑝

(
−
𝑘−1∑︁
𝑘=1

𝜎 (ℎ
𝑘
)𝛿
𝑘

)
,

𝛼 (ℎ𝑘 ) =1 − 𝑒𝑥𝑝 (−𝜎 (ℎ𝑘 )𝛿𝑘 ), and 𝛿𝑘 = ℎ𝑘+1 − ℎ𝑘 .

(2)

To sample rays efficiently with adaptive ray step 𝛿𝑘 , NeRF simulta-
neously optimizes two MLPs, a “coarse” one as a probability density
function for importance sampling and a “fine” one as the target
radiance field being sampled. Their parameters are then optimized
with the following objective functions:

L𝑖𝑚𝑔 =
∑︁
𝑖 𝑗

∥C𝑖𝑚𝑔 (𝑟𝑖 𝑗 ) − C𝑐 (𝑟𝑖 𝑗 )∥22 + ∥C𝑖𝑚𝑔 (𝑟𝑖 𝑗 ) − C𝑓 (𝑟𝑖 𝑗 )∥
2
2, (3)

where C𝑖𝑚𝑔 (𝑟𝑖 𝑗 ) is the reference color of pixel 𝑗 in image 𝑖 , and C𝑐
and C𝑓 are the color rendered by the coarse and fine models, respec-
tively. Based on the ray casting based rendering algorithm, NeRF
establishes the connection between 2D images and 3D geometry,
supporting both solid objects as well as volumetric media.

a) w.o. Eq. 4 b) with Eq. 4

Fig. 3. The VGG loss helps
improve the perceptual qual-
ity of the reconstructed results
and capture more high fre-
quency details.

In order to deal with dynamic
scenes of fluid and explore the tem-
poral evolution, we perform the fol-
lowing adaptations. First, we extend
the static NeRF model with time 𝑡 as
input. Second, we assume that the
dynamic scene to be reconstructed
only consists of Lambertian surfaces
and media with isotropic scattering.
Therefore, we remove the input 𝜃 and
𝜙 for simplicity. Finally, we use the
MLP with periodic activation func-
tions proposed in SIREN [Sitzmann
et al. 2020] instead of ReLU-based
MLPs with positional encoding strate-
gies in order to model the continuous
derivatives better. Same as the origi-
nal NeRF, the quadrature rule is used for volumetric rendering and
two models are trained as hierarchical volume sampling. Besides
the 𝐿2 loss in Eq. 3, we include a VGG-based perceptual loss term
as proposed in previous work on image and video synthesis [Ledig
et al. 2017; Chu et al. 2020]. Since it is time-consuming to render
all pixels of a given image using the 𝐹𝑣𝑖𝑠 model, we randomly crop
square patches from images with varying strides. In this way, only
small image patches in resolution of 40 × 40 are rendered during
the training and we get VGG features at different scales. The VGG
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feature distances are measured using cosine similarity by:

L𝑉𝐺𝐺 =
∑︁

𝜙∈VGG layers
1.0 −

Φ(I𝑖𝑚𝑔) ∗ Φ(I𝑣𝑖𝑠 )

Φ(I𝑖𝑚𝑔)

 ∗ ∥Φ(I𝑣𝑖𝑠 )∥ , with
I𝑣𝑖𝑠 = {C𝑐 or 𝑓 (𝑟𝑖 𝑗 ) | 𝑗 ∈ [ 𝑗𝑦 : 𝑗𝑦 + 40𝑠 : 𝑠, 𝑗𝑥 : 𝑗𝑥 + 40𝑠 : 𝑠]}
I𝑖𝑚𝑔 = {C𝑖𝑚𝑔 (𝑟𝑖 𝑗 ) | 𝑗 ∈ [ 𝑗𝑦 : 𝑗𝑦 + 40𝑠 : 𝑠, 𝑗𝑥 : 𝑗𝑥 + 40𝑠 : 𝑠]}.

(4)

As shown in Fig. 3, supervising the radiance fields with 𝑙2 and VGG
feature losses together helps to capture detailed structures better.

With these changes, we get a time-varying NeRF model based on
SIREN layers: 𝐹𝑣𝑖𝑠 : (𝑥,𝑦, 𝑧, 𝑡) → (c, 𝜎) . It models the continuous
functions of density and color and their derivatives in the space and
time. Continuous derivative is necessary for learning the temporal
evolution, which will be explained in the following section.

3.2 Physics-Informed Velocity Estimation
Recent approaches [Raissi et al. 2019, 2020] demonstrate that deep-
learning models can be trained as data-driven solutions of physical
problems via optimizing the governing PDEs, which are known
as PINN. A distinctive feature shared by these studies is to use
the continuous and mesh-free derivatives computed with auto-
differentiation. For fluid dynamics, Raissi et al. [2020] train neural
networks, 𝐹𝑓 𝑙𝑢𝑖𝑑 : (𝑥,𝑦, 𝑧, 𝑡) → (𝑑, u, 𝑝) , as the ansatz of the un-
derlying solution functions. They propose to supervise the network
using a ground-truth spatio-temporal dataset describing the distribu-
tion of the passive scalar with discrete data pairs {< (𝑥,𝑦, 𝑧, 𝑡), 𝑑 >

}𝑛 . The aforementioned auto-differentiation is used to optimize the
transport equation: 𝜕𝑑𝜕𝑡 + u · ∇𝑑 = 0, as well as the Navier-Stokes
equations:

𝜕u
𝜕𝑡
+ u · ∇u = − 1

𝜌
∇𝑝 + 𝜈∇ · ∇u + f ,

∇ · u = 0 .
(5)

Without requiring boundary conditions as input, this method can
handle fluid taking place in arbitrarily complex spacial domains.
High accuracy of velocity u and pressure 𝑝 can be achieved with a
shallow MLP when physical parameters, e.g. kinematic viscosity 𝜈 ,
are given and the density 𝑑 is densely sampled from exact solutions.
Based on the PINN technology, we propose to learn a velocity

network, 𝐹ℎ𝑖𝑑 : (𝑥,𝑦, 𝑧, 𝑡) → u , while training the radiance fields
network 𝐹𝑣𝑖𝑠 : (𝑥,𝑦, 𝑧, 𝑡) → (c, 𝜎) mentioned in Sec. 3.1. Same as
in 𝐹𝑣𝑖𝑠 , 𝐹ℎ𝑖𝑑 consists of SIREN layers [Sitzmann et al. 2020] with a
principled initialization scheme, which allows for training deeper
networks. Compared to the learning from ground-truth data [Raissi
et al. 2020], we are facing a tougher learning task with more ambigu-
ity since the density distribution < (𝑥,𝑦, 𝑧, 𝑡), 𝑑 > is not accurately
provided by the training data, but is represented by 𝜎 of 𝐹𝑣𝑖𝑠 which
is simultaneously optimized from images through volumetric ren-
dering. We optimize our velocity model 𝐹ℎ𝑖𝑑 by minimizing:

L𝐷𝜎
𝐷𝑡

=

( 𝜕𝜎
𝜕𝑡
+ u · ∇𝜎

)2
, and

L𝑁𝑆𝐸 =




 𝜕u
𝜕𝑡
+ u · ∇u




2
2
+𝑤𝑑𝑖𝑣




∇ · u


2
2
.

(6)

Instead of optimizing additional pressure fields and extra forces
with largely increased degrees of freedom, we have dropped out the
right-hand side in Eq. 5 as a simplification with valid assumptions,

which is equivalent to searching for a possible solution with minimal
influence from extra forces, pressure difference, and viscosity.

Eq. 6 is used to train 𝐹ℎ𝑖𝑑 as a strong physics-based prior. It cannot
be applied to 𝐹𝑣𝑖𝑠 , otherwise 𝜎 will be trivially reduced simply to
minimizeL𝐷𝜎

𝐷𝑡
. To improve the temporal consistency of the radiance

field with physics-informed learning, we propose to optimize the
radiance field across time with warping. Considering the volumetric
rendering of Eq. 2, instead of tracing rays at the original positions
𝑟∗
𝑖 𝑗
(ℎ) = 𝑜𝑖 + ℎd for pixel 𝑗 in image 𝑖 with a time-step 𝑡 , we query

radiance with point samples at warped positions, i.e.:(
c(ℎ), 𝜎 (ℎ)

)
= 𝐹𝑣𝑖𝑠

(
𝑟𝑖 𝑗𝑡 (ℎ), 𝑡 + 𝛿𝑡

)
,

𝑟𝑖 𝑗𝑡 (ℎ) = 𝑟∗𝑖 𝑗 (ℎ) + u(ℎ, 𝑡)𝛿𝑡 , u(ℎ, 𝑡) = 𝐹ℎ𝑖𝑑

(
𝑟∗𝑖 𝑗 (ℎ), 𝑡

) (7)

with 𝛿𝑡 ∼ N(0, 0.5), which stochastically associates the current
frame with its previous and next frames at 𝑡 − 1 and 𝑡 + 1. This
is in line with the ray-bending used in Non-Rigid NeRF [Tretschk
et al. 2021] and the flow warping in NeuralSF [Li et al. 2020], but
in a stochastic form which is more appropriate for turbulent fluid
motion than frame-to-frame warping with discrete time steps. We
use the Euler method to calculate warped positions for efficiency.
Higher-ordermethods, e.g. Runge-Kuttamethods, can provide better
accuracy. This will better preserve temporal consistency and spacial
detail, but requires longer computation time due to multiple velocity
queries. Note that we only warp the density field but use the original
color, since the color is not a transported scalar but an attribute
resulting from lighting and density distribution. The corresponding
rendering objective function with warping is denoted as L

𝑖𝑚𝑔
in

the rest of the paper.

3.3 Model-based Vorticity Compensation
Similar to optical flow estimation, it is challenging to estimate veloc-
ity from blurry observations. When optimizing L𝐷𝜎

𝐷𝑡
with a blurry

signal 𝜎 , a common issue is to have the rotational motion (referred to
as vorticity) underestimated since velocity is only supervised along
density gradient with u · ∇𝜎 . Having 𝐹𝑣𝑖𝑠 and 𝐹ℎ𝑖𝑑 simultaneously
optimized in our case, the two models have a chance to influence
each other self-consistently through their blurry representation,
resulting in sub-optimal solutions with underestimated vorticity.

To tackle this optimization difficulty, we propose to use a model-
based supervision for vorticity compensation. The overall spatial
distribution of the volume density has a strong correlation with
the underlying motion, e.g., a smoke ring indicates strong and con-
sistent vortices surrounding the annular region. Focusing on the
relationship between density and velocity, Chu et al. [2021] propose
to train a GAN as a volume-to-volume translation network mapping
a single density frame to its corresponding velocity frame. We de-
note their trained model as 𝑑2𝑣 : {𝜎}𝑛×𝑛×𝑛 → {u}𝑛×𝑛×𝑛 . We use
this model as an additional supervision between the density volume
generated by 𝐹𝑣𝑖𝑠 and the velocity volume generated by 𝐹ℎ𝑖𝑑 .

More specifically, we first sample 𝐹𝑣𝑖𝑠 at uniform grid positions to
get a density volume {𝑑𝑣𝑖𝑠 }323 . Then 𝑑2𝑣 model is used to generate
a velocity reference {u𝑑2𝑣}323 = 𝑑2𝑣

(
{𝑑𝑣𝑖𝑠 }323

)
. Since 𝑑2𝑣 model is

trained in a relatively smaller data domain which cannot cover the
variety of our fluid scenes, this velocity reference {u𝑑2𝑣}323 can be
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different from the velocity volume {uℎ𝑖𝑑 }323 sampled from the 𝐹ℎ𝑖𝑑
in terms of absolute scale. Thus, we normalize {u𝑑2𝑣}323 and use it
as a supervision on the vorticity distribution in the loss function:

L𝑑2𝑣 =





 ∇ × u𝑑2𝑣∑323

𝑛 ∥∇ × u𝑑2𝑣 ∥22/323
− ∇ × uℎ𝑖𝑑∑323

𝑛 ∥∇ × uℎ𝑖𝑑 ∥22/323






2
2
. (8)

Note that ∇ × u𝑑2𝑣 is calculated using numerical differences while
∇ × uℎ𝑖𝑑 is calculated with the automatic differentiation. Jointly
supervised with Eq. 6 and Eq. 8, our optimization can seek a more
accurate solution with enhanced vorticity as well as reduced errors
of L𝐷𝜎

𝐷𝑡
and L𝑁𝑆𝐸 , which will be demonstrated in the results.

3.4 Tackling Color-Density Ambiguity
NeRF [Mildenhall et al. 2020] and Neural Volumes [Lombardi et al.
2019] require a high number of camera views to disentangle the
color-density ambiguity.When using sparse camera views, the color-
density ambiguity is severe and over-fitting problems tend to occur.
Across many scenes, we have observed a special form of over-fitting
as “ghost density” artifact, which will be explained using an exem-
plar scene from ScalarFlow [Eckert et al. 2019] below.
ScalarFlow Data are recorded from five cameras located on an

120 degree arc and the fluid volume is positioned in front of a black
background. Using the grey images captured from the five cameras,
we train a time-varying NeRF model with SIREN layers (SIREN+T )
and its resulting density field is rendered as an RGBA image in
Fig. 4b with a dark green background. As shown in the image, the
density of SIREN+T fills most of the 3D region. With this density
region acting as a “canvas”, SIREN+T model simply learns to “paint”
appropriate color to match training views.While it manages to fulfill
the rendering objective function L

𝑖𝑚𝑔
, it produces a radiance field

far from the ground-truth with a lot of density in the background.
We denote the artifact as “ghost density”, which represents a typical
failure to disentangle the color-density ambiguity.

To tackle the color-density ambiguity, we propose to use a progres-
sively growingmodel to alleviate overfitting and use a regularization
term to penalize the “ghost density”. In line with the coarse-to-fine
optimization proposed by Park et al. [2020] for coordinate-based
MLPs with positional encoding, e.g. the original NeRF model, we
propose a layer-by-layer growing strategy for the MLPs without
positional encoding including the SIREN-based [Sitzmann et al.
2020] models. During training, we use a sliding window to first
select neurons from early layers like training a shallow model, then
gradually slide the window towards the following layers until the
full architecture is covered. On each hidden layer𝑚 ∈ [0, 𝑁 − 1],
the sliding window is represented by the weighting parameter
𝑤𝑙𝑚 = 𝑐𝑙𝑎𝑚𝑝 (1 + 𝑚𝑎 − 𝑚, 0, 1) · 𝑐𝑙𝑎𝑚𝑝 (1 + 𝑚 − 𝑚𝑎, 0, 1), with
𝑚𝑎 = 1+ (𝑁 −2)𝑠/𝑆 in the range from 1 to 𝑁 −1 which semantically
represents the current last hidden layer, 𝑠 stands for the current
training iteration step, and 𝑆 stands for the iteration step when the
progressive growing accomplishes. As a further explanation, layer
𝑚 = 0 is a permanent hidden layer with𝑤𝑙0 = 0, layer𝑚 = 1 only
fades out with 𝑤𝑙1 = 𝑐𝑙𝑎𝑚𝑝 (1 +𝑚 −𝑚𝑎, 0, 1), intermediate layers
fade in and out, and the last layer𝑚 = 𝑁 − 1 only fades in.
From Fig. 4a, we can see that the SIREN+T model in the first

row has density spreading across the domain at the beginning of

1k training iterations 5k training iterations 30k training iterations

𝑧

𝑦

𝑥
𝑧

𝑧

𝑦

𝑥
𝑧

𝑧

𝑦

𝑥
𝑧

a) Density profiles of SIREN+T (top), Growing (middle), Ours (bottom) during training.

b) SIREN+T c) Growing d) Ours

Fig. 4. The “ghost density” artifact. a) Density profile (side and top views) during
training. b),c), and d) Rendering results using a dark green background.

the training. After applying the progressive growing, the Growing
model in the second row learns a reasonable density profile at the
beginning, however, "ghost density" occurs at the iteration step
5k, marked in purple circles. To penalize the “ghost density”, we
propose a regularization in 2D image space:

L𝑔ℎ𝑜𝑠𝑡
(
C(𝑟𝑖 𝑗𝑡 ),B𝑖 𝑗𝑡 , 𝑎(𝑟𝑖 𝑗𝑡 )

)
= sigmoid

[
−
(
C(𝑟𝑖 𝑗𝑡 ) − B𝑖 𝑗𝑡

)2]
· 𝐴(𝑟𝑖 𝑗𝑡 ) . (9)

Taking the background colorB𝑖 𝑗𝑡 as a known input,L𝑔ℎ𝑜𝑠𝑡 penalizes
the opacity 𝐴(𝑟𝑖 𝑗𝑡 ) =

∑𝐾
𝑘=1𝑇 (ℎ𝑘 )𝛼 (ℎ𝑘 ) in 2D image space when

the rendered pixel color C(𝑟𝑖 𝑗𝑡 ) is close to the background color.
Applying L𝑔ℎ𝑜𝑠𝑡 on the progressively growing model, the third row
in Fig. 4a properly refines the density profile during training. From
c), d), and e) in Fig. 4, the Growing model reduces “ghost density”
and captures more details on the volume than the SIREN+T model,
while our full model achieves the best result without “ghost density”.
Our approach to removing the “ghost density” artifact is effective
across many scenes, which will be shown in the result section. All
testing cases use a background of a solid color like dark green, which
can be seen as being "transparent".

3.5 Extensions for hybrid scenes with static obstacles
In addition to the fluid part addressed above, we extend the NeRF-
based method to handle hybrid scenes of dynamic fluid with static
obstacles. Specifically, we design a variant of the proposed archi-
tecture to separate the dynamic and the static parts in an unsuper-
vised manner. As shown in Fig. 5, our hybrid 𝐹𝑣𝑖𝑠 model consists
of two sub-models for a scene. One model, 𝐹𝑣𝑖𝑠@𝑠𝑡𝑎𝑡𝑖𝑐 , represents
the static obstacle with 3D positions (𝑥,𝑦, 𝑧) as input and the other
one, 𝐹𝑣𝑖𝑠@𝑓 𝑙𝑢𝑖𝑑𝑠 , handles time-varying radiance with a 4D input
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(𝑥,𝑦, 𝑧)

𝐹𝑣𝑖𝑠@𝑠𝑡𝑎𝑡𝑖𝑐

(𝑐𝑟 , 𝑐𝑔, 𝑐𝑏 , 𝜎)

Ref

→
{ L�𝑖𝑚𝑔

L𝑉𝐺𝐺
L𝑔ℎ𝑜𝑠𝑡

}
←

(𝑥,𝑦, 𝑧, 𝑡)

𝐹𝑣𝑖𝑠@𝑓 𝑙𝑢𝑖𝑑𝑠

(𝑐𝑟 , 𝑐𝑔, 𝑐𝑏 , 𝜎)

Ours

alphacomposite

←L𝑜𝑣𝑒𝑟𝑙𝑎𝑦→

(𝑥,𝑦, 𝑧, 𝑡)

𝐹ℎ𝑖𝑑

(𝑢𝑥 , 𝑢𝑦, 𝑢𝑧)

{ L𝑑2𝑣
L𝑁𝑆𝐸
L𝐷𝜎

𝐷𝑡

}

Fig. 5. We use hybrid Models to learn radiance fields for static obstacles and dynamic
fluids. The velocity model is only related to the density of fluids.

(𝑥,𝑦, 𝑧, 𝑡). Since 𝐹𝑣𝑖𝑠@𝑓 𝑙𝑢𝑖𝑑𝑠 can represent the static part as well,
we defer the training of this model. That said, 𝐹𝑣𝑖𝑠@𝑠𝑡𝑎𝑡𝑖𝑐 is trained
first to describe the whole scene as much as possible and the time-
varying dynamic part can be taken over by 𝐹𝑣𝑖𝑠@𝑓 𝑙𝑢𝑖𝑑𝑠 gradually.

For particular scenes, additional constraints are helpful in prac-
tice, e.g., applying a time-varying hull when tracing 𝐹𝑣𝑖𝑠@𝑓 𝑙𝑢𝑖𝑑𝑠 ,
adding a hue constraint on 𝐹𝑣𝑖𝑠@𝑓 𝑙𝑢𝑖𝑑𝑠 , or capturing more static
images for the scene without fluids as references for 𝐹𝑣𝑖𝑠@𝑠𝑡𝑎𝑡𝑖𝑐 .
Instead, our method solely based on the hybrid architecture and the
sequential training strategy. This allows us to handle general scenes
and achieves an unsupervised separation of obstacles and fluids.
To train the new 𝐹𝑣𝑖𝑠 and a single 𝐹ℎ𝑖𝑑 , the objective functions

are adjusted accordingly. See Fig. 5 for a summary illustration of
the objective functions. The supervision in 2D image space, i.e.
L𝑖𝑚𝑔 +𝑤𝑉𝐺𝐺 · L𝑉𝐺𝐺 +𝑤𝑔ℎ𝑜𝑠𝑡 · L𝑔ℎ𝑜𝑠𝑡∗ , needs the objective color
C𝑐𝑜𝑚𝑝𝑜𝑠 (𝑟𝑖 𝑗𝑡 ) calculated from the alpha composite of the static and
dynamic components:

C𝑐𝑜𝑚𝑝𝑜𝑠 (𝑟𝑖 𝑗𝑡 ) =
𝐾∑︁
𝑘=1

𝑇 (ℎ𝑘 )
( 𝑠𝑡𝑎𝑡𝑖𝑐,𝑓 𝑙𝑢𝑖𝑑𝑠∑︁

𝑚𝑜𝑑𝑒𝑙

𝛼𝑚𝑜𝑑𝑒𝑙 (ℎ𝑘 )c𝑚𝑜𝑑𝑒𝑙 (ℎ𝑘 )
)
,

𝐴𝑐𝑜𝑚𝑝𝑜𝑠 (𝑟𝑖 𝑗𝑡 ) =
𝐾∑︁
𝑘=1

𝑇 (ℎ𝑘 )
(
𝛼𝑠𝑡𝑎𝑡𝑖𝑐 (ℎ𝑘 ) + 𝛼 𝑓 𝑙𝑢𝑖𝑑𝑠 (ℎ𝑘 )

)
,

(10)

where𝑇 (ℎ𝑘 ) = 𝑒𝑥𝑝

(
−∑𝑘−1

𝑘=1
𝜎𝑠𝑡𝑎𝑡𝑖𝑐 (ℎ𝑘 )+𝜎𝑓 𝑙𝑢𝑖𝑑𝑠 (ℎ𝑘 )𝛿𝑘

)
.Wemerely

adjust the ghost density regularization as:

L𝑔ℎ𝑜𝑠𝑡∗ =L𝑔ℎ𝑜𝑠𝑡
(
C𝑐𝑜𝑚𝑝𝑜𝑠 (𝑟𝑖 𝑗𝑡 ),B𝑖 𝑗𝑡 , 𝐴𝑐𝑜𝑚𝑝𝑜𝑠 (𝑟𝑖 𝑗𝑡 )

)
+ L𝑔ℎ𝑜𝑠𝑡

(
C𝑠𝑡𝑎𝑡𝑖𝑐 (𝑟𝑖 𝑗𝑡 ),B𝑖 𝑗𝑡 , 𝐴𝑠𝑡𝑎𝑡𝑖𝑐 (𝑟𝑖 𝑗𝑡 )

)
+ L𝑔ℎ𝑜𝑠𝑡

(
C𝑓 𝑙𝑢𝑖𝑑𝑠 (𝑟𝑖 𝑗𝑡 ),C𝑠𝑡𝑎𝑡𝑖𝑐 (𝑟𝑖 𝑗𝑡 ), 𝐴𝑓 𝑙𝑢𝑖𝑑𝑠 (𝑟𝑖 𝑗𝑡 )

)
.

(11)

On the other hand, the spatio-temporal motion supervision ofL𝐷𝜎
𝐷𝑡
+

𝑤𝑁𝑆𝐸L𝑁𝑆𝐸 + 𝑤𝑑2𝑣L𝑑2𝑣 is only related to the physics-informed
velocity model 𝐹ℎ𝑖𝑑 and the dynamic sub-model 𝐹𝑣𝑖𝑠@𝑓 𝑙𝑢𝑖𝑑𝑠 . Ad-
ditionally, a volumetric overlay loss, L𝑜𝑣𝑒𝑟𝑙𝑎𝑦 =

𝜎𝑠𝑡𝑎𝑡𝑖𝑐 ·𝜎𝑓 𝑙𝑢𝑖𝑑𝑠
𝜎2
𝑠𝑡𝑎𝑡𝑖𝑐

+𝜎2
𝑓 𝑙𝑢𝑖𝑑𝑠

, is

Ref
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Ours GlobalTrans NeuralVolumes

Novel View,
Nearly Opposite
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Given
View

Ours GlobalTrans NeuralVolumes

Novel View,
Nearly Opposite

Fig. 6. Comparisons of rendering results on the ScalarFlow Dataset with
synthetic (1st row) and real (2nd row) cases.

proposed to reduce the intersection of static and dynamic compo-
nents, since fluids should not exist inside obstacles.

4 RESULTS AND EVALUATION
We test our algorithm on synthetic and real fluid scenes with a wide
variety. Sec. 4.1 shows qualitative and quantitative results on the
ScalarFlow dataset [Eckert et al. 2019] with synthetic and real cap-
tured plume. Synthetic scenes in Sec. 4.2 are rendered using Blender
to test regular fluid settings under complex lighting conditions. At
last, hybrid scenes of fluid flow with complex obstacles are tested
in Sec. 4.3. We refer the readers to our supplemental material as a
webpage with corresponding video clips that more clearly display
the quality of the reconstructed radiance and motion fields.

4.1 ScalarFlow Dataset
As mentioned above, ScalarFlow dataset captures recordings of a
real plume using five fixed cameras located on a 120-degree arc.
After post-processing steps, like the subtraction of the first, empty
frame, the ScalarFlow recordings have a clean background in black.
In addition, ScalarFlow dataset has synthetic data of a virtual plume
simulated using a numerical fluid solver [Thuerey and Pfaff 2018].

Synthetic Data. In the test on the synthetic data, a regular fluid
flow is generated in resolution of 128 × 192 × 128. We simulate
120 steps with a time step of 0.5 (0 ≤ 𝑡 ≤ 60). The first 60 steps
(0 ≤ 𝑡 ≤ 30) are skipped as a startup and we use every second of the
remaining 60 steps (𝑡 = {30, 31, ..., 59}30) as the target fluid fields
to be reconstructed. For consistent comparison, the differentiable
rendering of Global Transport [Franz et al. 2021] is used to render
images at given time steps with a empirically determined lighting
condition that roughly matches the lighting of the real captures,
and black color is used as the background.
In the following, we first evaluate the proposed method (Ours)

against related work including the Global Transport method [Franz
et al. 2021] (GlobalTrans) and Neural Volumes [Lombardi et al. 2019]
(NeuralVolumes). Then, to illustrate the role of each term in our
supervision, ablation studies are presented with our full model
and three ablated ones. We provide qualitative evaluations via ren-
dered images and video clips (Sec. 1.1 of the supplemental webpage).
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Fig. 7. Reconstructed volume of density (top), velocity (bottom left) and
vorticity (bottom right) for the synthetic ScalarFlow data. We show the
front, side, and top views. Velocity and vorticity are visualized using the
middle slice. Velocity inside the visual hull is visualized at full intensity, and
reduced intensity (×0.3) is used outside.
Table 1. Comparisons with related work on the synthetic ScalarFlow Data.

Volumetric
Evaluation 𝑙2 (𝜎, 𝜎𝑟𝑒𝑓 ) ↓ 𝑙2 (u, u𝑟𝑒𝑓 ) ↓ ∇ · u ↓ Warp

Error ↓
MidWarp
Error ↓

Reference 0 0 0.0339 0.3212 0.0664
Neural
Volumes

5.06 (rgba2den)
11.20 (alpha2den) - - - -

Global
Transport 3.9324 0.5073 0.0592 0.0917 0.3905
Ours 3.6264 0.4475 0.0353 0.2371 0.1581

Quantitative comparisons are given with the numerical errors on
the reconstructed volumetric attributes (Table 1, 2).
In the second and third columns of Table 1, we calculate the

averaged 𝑙2 errors, 𝑙2 (𝜎, 𝜎𝑟𝑒 𝑓 ) = ∥𝜎 − 𝜎𝑟𝑒 𝑓 ∥22 and 𝑙2 (u, u𝑟𝑒 𝑓 ) =

∥u− u𝑟𝑒 𝑓 ∥22, on the reconstructed density and velocity volume with
regard to the reference. Note that the reference and results from
previous work have a discretized representation, thus our results
are sampled from our continuous models at uniform grid positions
to compare consistently using numerical metrics. While our models
and NeuralVolumes simply apply a 3D bounding box as the domain
of the grid in 128 × 192 × 128, GlobalTrans performs optimization
inside a time-varying visual hull which is projected from the 2D

Warp-Error MidWarp-Error
∥Adv(𝜎𝑡 , u𝑡 ) − 𝜎𝑡+1 ∥22 ∥Adv(𝜎𝑡+1, −0.5u𝑡+1 ) − Adv(𝜎𝑡 , 0.5u𝑡 ) ∥22

GlobalTrans

Ours

Reference

GlobalTrans

Ours

Reference

Fig. 8. Visualization of the warping error measured using two metrics. The left one
uses a full step forward warping, and the right one uses a half step forward warping
and a half step backward warping. We show the side and top views.

smoke region in the given images. All metrics are measured inside
this visual hull with the inflow region (the bottom 128 × 20 × 128
grid cells) excluded. Corresponding to the visualizations shown in
Fig. 7, the density reconstructed by Ours and GlobalTrans achieves
similar accuracy, but GlobalTrans exhibits high-frequency noise not
present in the reference. However, the density reconstructed from
the opacity of NeuralVolumes (denoted as "alpha2den") is rather
uniform, leading to an 𝑙2 error of 11.2. In addition, we generate
another density via 0.01𝛼 (𝑐𝑟 +𝑐𝑔 +𝑐𝑏 ) denoted as "rgba2den", which
removes the “ghost density” and achieves an 𝑙2 error of 5.06. This
indicates that NeuralVolumes fails in the density-color disentangle-
ment. While GlobalTrans has density and color disentangled based
on the given lighting condition, our method manages to disentangle
properly with the proposed growing strategy and the regularization
term L𝑔ℎ𝑜𝑠𝑡 without knowing the lighting condition.
Velocity and vorticity visualizations use the middle slices from

front, side, and top views. For all methods, we reduced the velocity
intensity outside the visual hull for visualization, since the region
with non-zero density is more important. NeuralVolumes does not
provide a velocity field. Its results also exhibit discontinuity in time.
GlobalTrans achieves better accuracy on the velocity but introduces
high-frequency noise, which is also more visible in its vorticity
field. The velocity of our method has the minimal 𝑙2 error, smallest
divergence, and small warping errors, as shown in the last three
columns of the table.
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We compare the warping error using two metrics in Fig. 8. The
first metric ∥Adv(𝜎𝑡 , u𝑡 ) − 𝜎𝑡+1∥22, denoted as "Warp-Error", repre-
sents a frame to frame warping. Denoted as "MidWarp-Error", the
second metric ∥Adv(𝜎𝑡+1,−0.5u𝑡+1) − Adv(𝜎𝑡 , 0.5u𝑡 )∥22 shows the
error between two consecutive density frames advected to the mid-
point time using forward and backward warping, respectively. Note
that all reconstruction models see images at time 𝑡 and 𝑡 + 1, but
the frames at the midpoint of 𝑡 + 0.5 are not given. The reference
is numerically simulated with a time step of 0.5. GlobalTrans has
the minimal frame-to-frame warping error which is even smaller
than the reference, since it is trained to minimize the transport error
at this discrete level. As a continuous method, Ours has a smaller
midpoint warping error than the full step warping error, which is in
consistent with the reference, and Ours has the smallest "MidWarp-
Error". While it is rigorous to evaluate the warping metric at an
unseen midpoint time, it is the situation in reality where continuous
fluid phenomena are captured by cameras with limited frame-rates.

Fig. 9. 1st row: Ablation study with reconstructed volume of density (left),
velocity (middle), and vorticity (right) for the synthetic ScalarFlow data.
2nd row: Velocity (left) and vorticity (right) zoomed in, corresponding to
the purple rectangles on the 1st row.

Table 2. Ablation study on the synthetic ScalarFlow Data.

Volumetric
Evaluation 𝑙2 (𝜎, 𝜎𝑟𝑒𝑓 ) ↓ 𝑙2 (u, u𝑟𝑒𝑓 ) ↓ ∇ · u ↓ Warp

Error ↓
MidWarp
Error ↓

Ours 3.6264 0.4475 0.0353 0.2371 0.1581
Ours
w.o. d2v 3.4926 0.8786 0.0653 0.2359 0.2192
Ours
w.o. NSE 3.8613 0.4883 0.0427 0.0905 0.0786
Ours
TransOnly 3.5060 0.9127 0.0689 0.0466 0.0402

We further conduct ablation studies on the synthetic scene using
the same evaluation metrics. In the first ablated model (Ours w.o.
d2v), we remove L𝑑2𝑣 , the term for vorticity compensation. The
second ablated model (Ours w.o. NSE) has dropped theL𝑁𝑆𝐸 term to

show the role of physical priors. In the last ablated model (Ours Tran-
sOnly), we remove both L𝑑2𝑣 and L𝑁𝑆𝐸 , so that its velocity field is
only supervised with the transport equation L𝐷𝜎

𝐷𝑡
. The supervision

applied on the radiance fields is not changed.
As shown in the first column of Table 2, our full and ablated mod-

els behave similarly on the density reconstruction, with an average
𝑙2 error of 3.6212 and their differences in the range of ±6%. While
Ours TransOnly has the smallest warping errors due to its velocity
field only supervised by the transport equation, its velocity actually
differs the most from the ground truth with an 𝑙2 error of 0.9127.
With our comprehensive supervision, Ours manages to reconstruct
velocity more accurately. By comparing Ours w.o. d2v to Ours and
comparing Ours TransOnly to Ours w.o. NSE, we see consistently
that the former models without L𝑑2𝑣 can only roughly match the
reference velocity and have vorticity fields that are significantly
underestimated. Merely using differentiable equations as objective
functions, their nonlinearity makes the optimization process of the
former models difficult. With the help ofL𝑑2𝑣 as model-based super-
vision, the latter models present enhanced vorticity and are much
closer to the reference. Meanwhile, when comparing Ours w.o. NSE
to Ours and comparing Ours TransOnly to Ours w.o. d2v, Navier-
Stokes equations serve as physical priors and help in generating
physically plausible but not necessarily correct solutions. We see
that the latter models always have smaller divergence compared
to the former ones. However, the result of Ours w.o. d2v shows
little improvement over Ours TransOnly in Fig. 9, both suffering
from vorticity underestimation. When using our full supervision,
Navier-Stokes equations contribute more to the correct solution.
Compared to Ours w.o. NSE, Ours presents sharper vorticity and has
more details in the velocity fields.

Real Captures. The real fluid captures of ScalarFlow have a frame-
rate of 60. We take the middle 120 frames from each camera view
for fluid reconstruction. With similar settings on camera calibra-
tion and lighting conditions, the conclusions for the real captures
are consistent with the synthetic case. NeuralVolumes trivially en-
codes density information into color fields, as shown in Fig. 10.
With given lighting conditions and visual hull applied, GlobalTrans
generates detailed density and velocity fields with high-frequency
noise. While our density volume is not as detailed as GlobalTrans,
the rendered result in Fig. 6 corresponds well to the reference from
a nearly opposite view. Ours also has smaller warping errors, which
are visualized at the bottom of Fig. 10. Corresponding videos are
presented in Sec. 1.2 of the supplemental webpage.

4.2 Synthetic Scenes with Complex Lighting
In this section, we show results of synthetic fluid scenes rendered
using Blender with a complex lighting combination of point lights,
directional lights and an environment map. The density volume is
rendered with strong and non-linear attenuation as dense smoke.
Since it is hard to approximate the lighting condition with point
and ambient lights in this setting, the Global Transport method
can hardly be applied to these scenes and is thus excluded in the
comparison. In these scenes, we have five cameras evenly distributed
on a circle with the target fluid in the center. All results are displayed
with a dark green background, which is different to the background
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Warp-Error MidWarp-Error

GlobalTrans

Ours

GlobalTrans

Ours

Fig. 10. Reconstructed volume of density (top), velocity (middle left) and
vorticity (middle right) for the real captures of ScalarFlow. Again, velocity
visualization is reduced outside the visual hull. Metrics evaluating warping
error with a full time step and with half steps are shown at bottom.

color used during training, and thus can be considered as being
“transparent” with no density accumulated along the rays.

A Simple Plume Scene. We first test with a regular plume scene in
resolution of 2563. 120 frames are used with a time step of 1.0. While
the ScalarFlow dataset has a black background, the blue color is used
in this case, as shown by the given view in Fig. 11. Due to the complex
rendering setting with sparse views given, NeuralVolumes shows
strong “ghost density” in blue. This artifact is largely reduced inOurs
w.o. d2v with the help of L𝑔ℎ𝑜𝑠𝑡 , but is still visible at the bottom part
with thin smoke. Our full model presents a good density estimation
with “ghost density” hardly noticeable. This improvement over Ours
w.o. d2v is mainly due to a more accurate velocity field. Considering
the thin smoke at the bottom part of Ours w.o. d2v, a less accurate
velocity field could warp them to a region expecting fluid density in

Fig. 11. The plume scene. Rendering results on the first two rows show that our
method disentangles density and color successfully, while Ours w.o. d2v has the color-
bleeding artifact. Deformation contains sharp edges in novel views due to its discon-
tinuous deformation, while NeuralVolumes suffers from “ghost density”. Our velocity
reconstruction in the third row is closest to the ground-truth.

white at some time, and warp them to a region expecting nothing
or at least something in blue at some other time. The temporal
inconsistency results in a “color bleeding” artifact that is slightly
visible in given views and more visible in novel views.

Some related works [Tretschk et al. 2021; Li et al. 2020] explore
dynamic NeRF, but most of them focus on scenes with deformable
surfaces and introduce constraints that are not appropriate for fluids.
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Ref, A Novel View Ours, Novel View 1 Our Fluid, Novel View 1

Ours, Novel View 2 Our Static, Novel View 2 Our Fluid, Novel View 2

Ours w.o. d2v, Novel View 1 NeRF+T, Novel View 1 NeuralVolumes, Novel View 1

Ours w.o. d2v, Novel View 2 NeRF+T, Novel View 2 NeuralVolumes, Novel View 2

Fig. 12. A plume scene with a sphere obstacle With a hybrid architecture, Ours
reconstruct static obstacles and dynamic fluids separately in an unsupervised manner,
while NeuralVolumes and NeRF+T have “ghost density”. Our reconstructed velocity
closely follows the ground-truth, while Ours w.o. d2v underestimates vorticity.

While we do not compare to these methods due to the largely differ-
ent reconstruction target, we train a Deformationmodel to illustrate
the impact of inappropriate constraints. Learning a canonical spa-
tial radiance field 𝐹𝑐𝑎𝑛𝑜𝑛 : (𝑥,𝑦, 𝑧) → (c, 𝜎) and a spatiotemporal
deformation field 𝐹𝑑𝑒𝑓 𝑜𝑟𝑚 : (𝑥,𝑦, 𝑧, 𝑡) → (𝑥𝑐𝑎𝑛𝑜𝑛, 𝑦𝑐𝑎𝑛𝑜𝑛, 𝑧𝑐𝑎𝑛𝑜𝑛),
Deformation uses the same network architecture as ours. Their pix-
els are rendered with

(
c(ℎ𝑘 ), 𝜎 (ℎ𝑘 )

)
= 𝐹𝑐𝑎𝑛𝑜𝑛

(
𝐹𝑑𝑒𝑓 𝑜𝑟𝑚 (𝑟𝑖 𝑗𝑡 (ℎ𝑘 ))

)
.

As shown in Fig. 11, the Deformation model achieves quality similar
to Ours w.o. d2v on the given view, but its density volume has unnat-
ural stretches that are visible in novel views. From the visualization
of the density at the bottom left, we can see the existence of “ghost
density” at the bottom for the Deformation model and Ours w.o.
d2v. While Deformation does not produce velocity fields directly,

we calculated one from 𝐹𝑑𝑒𝑓 𝑜𝑟𝑚 for visualization. As shown on the
bottom of Fig. 11, the velocity calculated from 𝐹𝑑𝑒𝑓 𝑜𝑟𝑚 is heavily
constrained by the deformation and uniformly goes upward with
almost zero vorticity. This relatively rigid deformation results in the
stretches discussed above. Our full model generates density and ve-
locity volumes that can roughly match the reference. The density in
our result is more concentrated on the "surface" since the reference
fluid has nonlinear attenuation, which is not given but can easily
be extended if provided. Videos of the plume scene are presented in
Sec. 2.1 of the supplemental webpage.

Plume with a Regular Obstacle. While previous scenes have fluids
as the sole target, we test hybrid scenes with obstacles in the follow-
ing. The first hybrid scene has a regular obstacle in shape of a sphere.
The simulation resolution is 2563 and 148 frames are simulated with
a time step of 1.0. The background is set as white during training. As
shown in the first row of Fig. 12, based on our hybrid architecture
and the deferred temporal component, our full model has the static
and dynamic components successfully separated. While our full
model generates natural density volume without “ghost density”,
the result of Ours w.o. d2v on the left of the second row is slightly
blurry. NeuralVolumes contains “ghost density”. The baseline model
of NeRF+T, which is the original ReLU-based NeRF model with time
as an extended dimension, has problems dealing with the white
background and results in “ghost density” fulfilling the domain. Due
to the occlusion of the “ghost density”, there is a lack of supervi-
sion in the inner region and some density noise can be observed at
novel views. Visualizations of velocity and vorticity are shown at
the bottom, with ours closely resembling the reference. Its vorticity
is also much stronger than Ours w.o. d2v. The supplemental webpage
presents the videos for this scene in Sec. 2.2.

4.3 Complex Scenes with Arbitrary Obstacles
At last, we test our algorithm in complex scenes with obstacles of ar-
bitrary shape under lighting composited by point lights, directional
lights, as well as an environment map. The black color is used as the
background during the training. Besides the five evenly distributed
cameras on a circle, we use two more cameras viewing from above
since the geometry is very challenging in the following scenes.

The Car Scene. The Car scene is simulated in resolution of 768 ×
192 × 307 for 148 steps with a time step of 1.0. While other scenes
only have one or two small inflow regions, the whole domain of this
scene uses a strong free stream velocity, whose direction is visual-
ized as yellow on the right of Fig. 13. We simulate a shallow sheet of
smoke passing through the car from the front top. The velocity field
in this scene is particularly important for vehicle design, which can
be used to calculate the drag force, the surface pressure, etc. Using
our algorithm, the geometry of the car and the density of the smoke
are nicely and separately reconstructed. While the reconstructed
velocity roughly matches the reference, its vorticity is not as turbu-
lent as the ground truth. This is mainly because smoke density is
mixed together due to the strong vorticity in all directions at the
wake of the car and the observed density derivatives in space and
time are not as high as it should be. To improve on this particular
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Ref, A Given View Fluids, A Novel View

Static part, A Novel ViewOurs, A Novel View

Our velocity, side-front-top

Ref velocity, side-front-top

Our density, side-front-top

Ref density, side-front-top

Fig. 13. Rendering and visualization of the radiance, density, and velocity fields reconstructed on the “car” scene. Our method reconstructs the density
distribution of the smoke and the complex geometry of the car using only 7 camera views.

Fig. 14. Rendering and visualization of the radiance, density, and velocity
fields reconstructed on the “game” scene. Our velocity large resembles the
complex reference.

case, it would be interesting to experiment with smoke in varying
color or to apply frequency-based priors to constrain the vorticity.

The Game Scene. In theGame scene, dense smoke is coming out of
a tube and hitting three monsters on the stairs. It is in resolution of
512×432×408. 148 frames are simulated with a time step of 1.0. This
scene represents a very difficult case due to the complex geometry,
the occlusion caused by the close positioning of the monsters and
stairs, the dense smoke hiding details inside, the strong motion
at the interface of smoke and obstacles, and the moving shadow
cast from the smoke. Faced with all these difficulties, our method
manages to separate the static and dynamic components very well.
While the inner region of the reconstructed smoke density is a little
blurry, the rendered images have reasonable details on the outer
bound area of the smoke. The complex geometry of obstacles are
reconstructed reasonably well in general. The reconstructed velocity
field can nicely resemble the complex ground truth, with smoke
density accurately flowing around obstacles other than passing
through.

4.4 Results Summary and Limitations
To summarize, we have tested our algorithm on real and synthetic
fluid scenes. For synthetic simulations, we have used buoyant and
stream flow, with and without inflow, with and without obstacles
in regular and arbitrary shapes. For the rendering, we have used
dense and thin smoke, linear and nonlinear attenuation, simple and
complex lighting conditions.
We observe consistent results provided by our model: “Ghost

density” is successfully removed in density fields as an appropriate
disentanglement of density and color. The resulting velocity gen-
erally matches the reference and showing enhanced vorticity than
purely PINN-based learning. Additionally, our hybrid model sepa-
rately reconstructs static and dynamic components without using
additional manual labeling. The limitations of our method mainly
pertain to non-linear aspects of the optimization process and slow
training caused by the PDEs calculation via auto-differentiation.
While there is room for improvement on the high-frequency details
of the reconstructed velocity field, end-to-end estimation of veloc-
ity from images is a difficult task, and the proposed model-based
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supervision yields significant improvements. Applying frequency-
based supervision [Yifan et al. 2022] on the velocity would be an
interesting future avenue. Also, the training of a single NeRF model
is not efficient due to prohibitive queries of the neural networks.
Training our algorithm with a hybrid architecture and a PINN-based
velocity model on the dynamic data is around three times slower
than that. Training details including hyper-parameters and training
time for each scene is provided in the supplemental material, for
e.g., the Game scene takes 64 hours when using a single NVIDIA
Quadro RTX 8000 GPU. With the recent progress in fast neural
representation training [Yu et al. 2021; Müller et al. 2022], we an-
ticipate this limitation to be resolved in the near future. Besides
code optimization and the use of multiple GPUs, breaking down
large-scale scenes in space can make their reconstructions more
efficient. Our fluid reconstruction can be used to enhance physical
understanding from videos. The reconstructed fields can also be
used in graphics applications. In contrast with forward simulation
methods that allow fluid animations to be designed using initial con-
ditions and physical parameters, reconstruction methods like ours
allow users to generate fluid phenomena from video captures. In
order to present fluid animations with fine-level detail, it would be
interesting to apply our approach together with detail synthesis [Xie
et al. 2018] or fluid guiding [Forootaninia and Narain 2020].

5 CONCLUSIONS
We have introduced an optimization-based algorithm that is able
to reconstruct continuous fluid fields end-to-end from a sparse set
of video frames based on the developed spatio-temporal neural
representation for dynamic fluid flow and the underlying physics-
informed learning mechanisms. To the best of our knowledge, this is
the first method to allow flowmotion to be reconstructed from image
captures of hybrid scenes with both fluid and arbitrary obstacles,
while being agnostic to initial, boundary, or lighting conditions.
In our optimization framework, we jointly apply supervision from
images, physical priors, as well as data prior encoded as a pre-trained
model. With the comprehensive supervisions, our method exhibits
stable effectiveness and strong flexibility on a wide range of scenes.

We see our method as an crucial step towards capturing and ana-
lyzing real fluid phenomena with relaxed constraints, e.g. allowing
captures under changing illumination. With the advantage of han-
dling scenes with unknown obstacles and lighting, we are especially
interested in exploring in-the-wild fluid capture as well as more
elaborate fluid-obstacle interactions in the future.
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